a2 United States Patent

Dolev et al.

US010467389B2

US 10,467,389 B2
Nov. 5, 2019

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(86)

87

(65)

(60)

(1)

(52)

SECRET SHARED RANDOM ACCESS
MACHINE

Applicant: SECRETSKYDB LTD, Beer-Sheva
(IL)

Inventors: Shlomo Dolev, Omer (IL); Yin Li,

Xinjiang (CN)

Assignee: SECRETSKYDBLTD, Beer-Sheva (IL)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 31 days.
Appl. No.: 15/543,925
PCT Filed: Jan. 14, 2016
PCT No.:

§ 371 (e)(D),
(2) Date:

PCT/IL2016/050044

Jul. 14, 2017

PCT Pub. No.: W02016/113738
PCT Pub. Date: Jul. 21, 2016

Prior Publication Data
US 2018/0011996 A1l Jan. 11, 2018

Related U.S. Application Data

Provisional application No. 62/103,589, filed on Jan.
15, 2015, provisional application No. 62/114,084,

(Continued)
Int. CL.
GO6F 21/14 (2013.01)
GO6F 21/75 (2013.01)
(Continued)
U.S. CL
CPC ..o GO6F 21/14 (2013.01); GOGF 9/46

(2013.01); GOGF 21/75 (2013.01); HO4L
9/0656 (2013.01); HO4L 9/085 (2013.01);
GOGF 12/1408 (2013.01)

Dealer

(58) Field of Classification Search
CPC . GOG6F 20/14; GO6F 21/75; GO6F 9/46; GOGF
12/1408
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,633,470 A 12/1986 Welch et al.
2012/0185946 Al* 7/2012 Kamara GOG6F 9/5072
726/26
2015/0193628 Al* 7/2015 Maniatakos GOG6F 21/602
713/164

FOREIGN PATENT DOCUMENTS

WO WO 2014/174516 A1 10/2014

OTHER PUBLICATIONS

Nektarios Georgios Tsoutsos and Michail Maniatakos, HEROIC:
Homomorphically EncRypted One Instruction Computer, 2014,
IEEE, pp. 1-6 (Year: 2014).*

(Continued)

Primary Examiner — Ellen Tran
(74) Attorney, Agent, or Firm — Fenwick & West LLP

(57) ABSTRACT

A method of providing a distributed scheme for executing a
RAM program, without revealing any information regarding
the program, the data and the results, according to which the
instructions of the program are simulated using SUBLEQ
instructions and the execution of the program is divided
among a plurality of participating computational resources
such as one or more clouds, which do not communicate with
each other, while secret sharing all the program’s SUBLEQ
instructions, to hide their nature of operation and the
sequence of operations. Private string matching is secretly
performed by comparing strings represented in secret shares,
for ensuring the execution of the right instruction sequence.
Then arithmetic operations are performed over secret shared
bits and branch operations are performed according to the
secret shared sign bit of the result.

24 Claims, 2 Drawing Sheets

US 10,467,389 B2
Page 2

Related U.S. Application Data

filed on Feb. 10, 2015, provisional application No.
62/206,868, filed on Aug. 19, 2015.

(51) Int. CL

HO4L 9/06 (2006.01)
HO4L 9/08 (2006.01)
GO6F 9/46 (2006.01)
GOGF 12/14 (2006.01)
(56) References Cited

OTHER PUBLICATIONS

Dolev, S., et al., “Accumulating Automata and Cascaded Equations
Automata for Communicationless Information Theoretically Secure
Multi-Party Computation,” Aug. 11, 2014, 23 Pages, Retrieved from
the Internet: <URL :http://eprint.iacr.org/2014/611/20140813:233811>.
Dolev, S., et al., “Secret Shared Random Access Machine,” Mar. 28,
2015, 13 Pages.

Patent Cooperation Treaty, International Search Report, Interna-
tional Patent Application No. PCT/IL2016/050044, dated Apr. 17,
2016, 3 Pages.

Patent Cooperation Treaty, Written Opinion of the International
Searching Authority, International Patent Application No. PCT/
11.2016/050044, dated Apr. 17, 2016, 4 Pages.

Shamir, A., “How to Share a Secret,” Communications of the ACM,
vol. 22, No. 11, Nov. 1979, 2 Pages.

Tsoutsos, N.G., et al., “HEROIC: Homomorphically EncRypted
One Instructions Computer,” IEEE Design Automation & Test in
European Conference & Exhibition, Mar. 24-28, 2014, 6 Pages.

* cited by examiner

U.S. Patent Nov. 5, 2019 Sheet 1 of 2 US 10,467,389 B2

index A B C PC +1
Program table
T » PC | 1 4, | B, | ¢ 2
i E 2 A, B, o 3
A | B | C|PCH frmmemmmmenast

roo Memory table i 4| B | G il
oo [[y !
b ! 1 RW-Mem[1] : ’
Lo ! : *
Lo iRead—Write m | A, | B, |C | 1
1 i } .
Lo x ’
b e »on RW-Mem[n] |1
: O Y
: [nks Sttt ¥
; Hon R-Mem|1] ;
1 | f
i P2 R-Mem|[2} ;
H | 1
i L 3 R-Mem|[3] ! Read-only: k> n
| | s |
R g f |
btk R-Mem[£] !
I i

word length: ¢ bits

Fig. 2

U.S. Patent Nov. 5, 2019 Sheet 2 of 2 US 10,467,389 B2

Dealer

US 10,467,389 B2

1
SECRET SHARED RANDOM ACCESS
MACHINE

FIELD OF THE INVENTION

The present invention relates to the field of distributed
computing, such as cloud computing. More specifically, the
present invention is related to a method of providing a
distributed scheme for executing RAM programs, without
revealing any information regarding the program, the data
and the results.

BACKGROUND OF THE INVENTION

A random access machine (RAM) is a simple model of
computation. Its memory consists of an unbounded
sequence of registers. Each of the registers may hold an
integer value. The control unit of a RAM holds a program,
i.e. a numbered list of statements. The program counter (PC)
determines which statement is to be executed next. A
RAM-program is executed while in each work cycle, the
RAM executes one statement of the program. The program
counter specifies the number of the statement that is to be
executed.

To run a program in the RAM, it is required to:

define the program, i.e. the exact list of statements;

define starting values for the registers (the initial input);

define starting values for the program counter (usually,
starting with the first statement).

Secure and private computations over RAM are preferred
over computations with circuits or Turing machines. Secure
and private RAM executions become more and more impor-
tant in the scope avoiding information leakage when execut-
ing programs over a single computer as well as over the
clouds.

Cloud computing (for the delivery of hosted services over
the Internet, which enables companies to consume compute
resources as a utility, rather than having to build and
maintain computing infrastructures in-house) provides cost-
efficient and flexible shared infrastructure and computa-
tional services on demand for various customers who need
to store and operate on a huge amount of data. Until now,
there are various services providers such as Amazon and
Google who offer platforms, software, and storage outsourc-
ing applications. Much attention has been paid to these
platforms due to the potential benefits and business oppor-
tunities that clouds could bring. However, cloud computing
also introduces security and privacy risks for the clients. For
example, some of the cloud providers are not perfectly
reliable and are vulnerable to network attacks and data
leakage. Furthermore, even a single computer with the same
cloud organization is untrustworthy.

There are possible attacks on a single computer, during
which information is copied from the bus of the computer
and sent to an adversary. Therefore, it is extremely important
that a server will process unrevealed programs over unre-
vealed data, in information theoretical secure manner.

One of the most important requirements of the cloud
clients is to process their data in a confidential way. Several
techniques are applied to address data storage privacy and
security computation on clouds. Among these studies, secu-
rity in evaluating a Random Access Machine (RAM) pro-
gram is an important task, since many modern algorithms
are operating on the von Neumann RAM architecture (a
computer architecture for an electronic digital computer
with parts consisting of a processing unit containing an
arithmetic logic unit and processor registers, a control unit

10

20

25

30

35

40

45

50

55

60

65

2

containing an instruction register and program counter, a
memory to store both data and instructions, external mass
storage, and input and output mechanisms).

There are mainly two existing ways for secure computa-
tion of RAM programs. The first way, is to convert a RAM
(one shot) program into circuits and the second is to use
oblivious RAM (a data encryption tool where the access
pattern is independent of the inputs to the algorithm so that
it hides not only the data but also the associated algorithms
and executed operations, it works by). Oblivious RAM
schemes are preferred as they can implement a never ending
program (such as an operating system and) there is no need
to convert the program into a binary circuit, which leads to
a huge blowup in program size and its running time.

Even though the proposed solutions for secure RAM
evaluation can address various privacy challenges including
two-party, multiparty or large-scale computation against
semi-honest or malicious adversaries, they all assume that
the processors used by clouds are trustworthy. Thus, in these
proposed solutions, the CPU has to decrypt the input data
before processing and then encrypt the output data again.
During these years, the semiconductor design and fabrica-
tion process became global, integrated circuits tend to be
increasingly vulnerable to malicious activities and altera-
tions. An adversary can introduce a special hardware Trojan,
designed to disable or destroy a system in the future, or leak
confidential information. Similar attack has already been
demonstrated, where a specially designed Trojan (malicious
computer program) in the CPU revealed sensitive informa-
tion to the adversary.

A client wishing to run a program on the clouds does not
want to reveal any information about both the program and
the data. The cloud with untrusted hardware that listens to
the bus may extract information on the internal activity of
the processor.

Unfortunately, none of the protocols that decrypt data
prior to processing and manipulating the data can avoid
information leakage when the adversary acts within the
hardware. Thus, there is a need to execute an encrypted
program on encrypted data without decrypting neither the
program nor the data. In order to protect privacy, a straight-
forward approach is to execute the encrypted instructions in
the clouds processors directly.

Fully Homomorphic Encryption (FHE—a cryptosystem
that supports arbitrary computation on ciphertexts, which
enables the construction of programs for any desirable
functionality, which can be run on encrypted inputs to
produce an encryption of the result. Since such a program
need never decrypt its inputs, it can be run by an untrusted
party without revealing its inputs and internal state. The
existence of an efficient and fully homomorphic cryptosys-
tem would have great practical implications in the outsourc-
ing of private computations, for instance, in the context of
cloud computing) is a way to achieve this goal. However, the
main problem is that the proposed scheme caused high
overhead of computation, which make FHE less practical.
Moreover, Gentry’s scheme relied on the hardness assump-
tions on ideal lattices which is only computationally secure,
rather than key-less information that is information theo-
retical secure.

It is therefore an object of the present invention, to
provide a distributed scheme for executing RAM programs
without revealing any information regarding the computa-
tion.

US 10,467,389 B2

3

It is another object of the present invention, to provide a
distributed scheme for executing RAM programs without
revealing any information regarding the program, the data
and the result.

It is yet another object of the present invention, to provide
a distributed scheme for computing RAM programs which is
information theoretic secure RAM execution of perfectly
unrevealed programs.

It is still another object of the present invention, to
provide a distributed scheme for computing RAM programs
which is compatible with big data that is stored in a secret
sharing fashion over the clouds, without reconstructing the
data from the shares.

Other objects advantages of the present invention will
become clear as the description proceeds.

SUMMARY OF THE INVENTION

The present invention is directed to a method of providing
a distributed scheme for executing a RAM program, without
revealing any information regarding the program, the data
and the results, according to which the instructions of the
program are simulated using OISC instructions (such as
SUBLEQ instructions) and the execution of the program is
divided among a plurality of participating computational
resources (e.g. one or more clouds) which do not commu-
nicate with each other, while secret sharing all the program’s
OISC instructions, to hide their nature of operation and the
sequence of operations. Private string matching is secretly
performed by comparing strings represented in secret shares,
for ensuring the execution of the right instruction sequence.
Then arithmetic operations are performed over secret shared
bits and branch operations are performed according to the
secret shared sign bit of the result.

Secret sharing may be performed according to Shamir’s
secret sharing, using random polynomials P(x) by allowing
a dealer to:

a) select additional points, X, such that, P(x)=0 when

choosing the random polynomials P(x); and

b) distribute n points having x values which are different

from the x values of these additional points in P(x)=0,
while storing the additional points to itself as an
additional secret for revealing the polynomials value.

Whenever performing multiplication operation is
required, degree reduction of the polynomial used for secret
sharing is performed.

The dealer can reconstruct the polynomial and the secret,
using the n points of the polynomial that are maintained by
the participating clouds with the additional points that are
maintained by the dealer.

The keys may be restricted to be points in which the
polynomial is zero for every value, thereby allowing addi-
tions and multiplications while preserving the secret key
unchanged.

String matching of secret shares may be performed
according to the scheme of Accumulating Automata and
Cascaded Equations Automata using unary, binary or other
representations, and secret shares of the searched pattern.

Secret shared Subleq may be created using a unary
representation to represent the addresses including memory
addresses and instruction indices, where each bit of the
unary representation is encoded as a secret shared value. The
first block stores the instruction index number, being equiva-
lent to the instruction address, the second and the third
blocks store the operand addresses and the fourth to fifth
blocks store the branch index and the index of next instruc-
tion, respectively.

10

15

20

25

30

35

40

45

50

55

60

4

Subtraction may be performed by representing every
operand as a signed number using a Two’s complement
representation and transforming subtraction into addition,
such that the most significant bit is the sign bit.

The dealer may divide the execution among participating
clouds by:

a) encoding the address using unary representation;

b) encoding the data item using Two’s complement rep-

resentation;

¢) allowing the dealer to pick random polynomials of
degree X to share every bit of the address and data; and

d) allowing the dealer to send the secret shared program
to E participating clouds, such that the integer E is
greater than the highest polynomial degree generated.

In one aspect, all programs may consist of the same
sequence of opcodes, where the execution may execute all
opcodes and select only the one intended.

According to one embodiment, instead of using only the
SUBLEQ command, a program to be executed by untrusted
participating clouds may remain unrevealed using a fixed set
of commands that appear in a fixed order.

The RAM program may use a modified Harvard archi-
tecture which physically separates storage and signal path-
ways for instructions and data. The RAM program may
separate the read-only and read/write part of data.

In one aspect, the degree of the polynomials is reduced
after a predetermined number of multiplications or may be
used for the read-only part and is unchanged throughout the
execution(s).

The read/write part of the memory may be refreshed at
intervals of several WRITE operations.

The execution may be performed blindly, and is defined
by the operands addresses, some of which are designed to
have no effect.

The program can be run over one or more computational
resources, such that possible leakage may reach the same
vendor or country or entity, or over one or more computa-
tional resources, such that possible leakage may reach
competing, non-collaborating, vendors or countries or enti-
ties.

The present invention is also directed to a system of
providing a distributed scheme for executing a RAM pro-
gram, without revealing any information regarding the pro-
gram, the data and the results, which comprises:

a) a compiler for simulating the instructions of the pro-

gram using SUBLEQ instructions;

b) a plurality of computational participating clouds, each
of which is a adapted to execute a portion of the RAM
program;

¢) a computerized dealer, being in bidirectional commu-
nication with the clouds, for dividing the execution of
the program among the clouds to program portions
using secret sharing, based on random polynomials and
for and composing the result of executing the program
by collecting partial results, each of which being the
outcome of executing a portion of the RAM program
assigned to a cloud;

d) at least one computerized randomizer being in bidirec-
tional communication with the clouds, for providing
the random polynomials to the clouds; and

e) at least one computerized reducer being in bidirectional
communication with the clouds, for reducing the
degree of polynomials in response to the execution of
multiplication instructions, without revealing the
secret.

Several reducers may be used for checking the integrity of

the results and in case of non-integrity, identifying which

US 10,467,389 B2

5

reducer is malicious. The dealer and the reducer(s) may
share common roots of all polynomials, unknown to the
participating clouds, such that additions and multiplications
keep the roots unchanged.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates a format of the SSS-Subleq instruction,
according to an embodiment of the invention;

FIG. 2. Illustrates the outline of the RAM architecture,
proposed by the present invention; and

FIG. 3 illustrates the outline of the proposed RAM model
and its use for the program execution.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention proposes a novel distributed
scheme for executing RAM programs without revealing any
information regarding the computation, including the pro-
gram, the data and the result. The secret sharing (such as
Shamir’s secret sharing) is used to share all the program
instructions and private string matching techniques, to
ensure the execution of the right instruction sequence. The
new proposed scheme is information theoretic secure (i.e.,
the security is derived purely from information theory and
cannot be broken even when the adversary has unlimited
computing power) and does not rely on any computational
hardness assumptions, thereby gaining indefinite private and
secure RAM execution of perfectly unrevealed programs.

The proposed model for outsourcing arbitrary computa-
tions provides confidentiality, integrity, and verifiability.
Unlike the former RAM-based secure computation models,
the proposed scheme hides the client program and data all
the time, and manipulates the secrets directly. Therefore, no
confidential information would be revealed. The setting is
particularly interesting in the scope of big data (i.e., any
voluminous amount of structured, semi-structured and
unstructured data that has the potential to be mined for
information) that is stored in a secret sharing fashion over
the clouds, and there is a need to repeatedly compute
functions over the data without reconstructing the data from
the shares. The implementation of interactive program made
possible by reading and writing specific memory locations
during the execution.

The proposed method uses a combination of Shamir’s
Secret Sharing (A. Shamir, “How to share a secret”, Com-
munications of the ACM, vol. 22, no. 11, pp. 612-613,
November 1979) and the proposed Accumulating Automata,
described in WO 2014/174516.

Secret sharing is used to utilize perfect privacy of the
client’s program and processor states and string matching is
used to facilitate instruction execution. The modern instruc-
tion set, for example, Complex Instruction Set Computer
(CISC—refers to computers designed with a full set of
computer instructions that were intended to provide needed
capabilities in the most efficient way) are too complicated
when there is a need to hide their nature of operation and the
sequence of operations they form. Thus the proposed model
uses One Instruction Set Computer (OISC), which is a
machine that uses only one instruction, while obviating the
need for a machine language Operational Code (OpCode—
the portion of a machine language instruction that specifies
the operation to be performed). Furthermore, the approach
proposed by the present invention could extended to
Reduced Instruction Set Computer (RISC—is a micropro-

10

15

20

25

30

35

40

45

50

55

60

65

6

cessor that is designed to perform a smaller number of types
of computer instructions so that it can operate at a higher
speed), where a small number of instructions could be
utilized to implement the whole program.

By applying secret string matching technique described in
“Accumulating Automata and Cascaded Equations
Automata for Communicationless Information Theoretically
Secure Multi-Party Computation” (S. Dolev, N. Gilboa and
X. Li, Cryptology ePrint Archive, Report 2014/611, 2014) it
is possible to simulate the OISC instruction SUbtract and
Branch if Less than or EQual to zero (SUBLEQ—the
SUBLEQ instruction subtracts the contents at address A
from the contents at address B, stores the result at address B,
and then, if the result is not positive, transfers control to
address C. If the result is positive, execution proceeds to the
next instruction in sequence) and other similar instructions
that can be combined to form a RISC machine. The Accu-
mulating Automata allows performing string matching
secretly without revealing any information, which is the key
for achieving the security requirement.

Shamir Secret Sharing (SSS)

Shamir Secret Sharing (SSS) is an information theoretic
secure protocol, which allows a dealer to secret share a
values s among E players. There is a threshold 8 for the
scheme, such that, the knowledge of or fewer player secrets
make the adversary learn no information about s, but if more
than players communicate their shares to each other, they
can easily recover the secret.

Distribution: The dealer picks a random polynomial fEF,
[x] of degree d<E such that {{0)=s€F . The dealer also
chooses E arbitrary non-zero indices o, . . ., ag,
computes f(c,) for 1=i<E and send (c,, f{e;)) to each
corresponding players.

Reconstruction: Any 8+1 players can reconstruct the
polynomial f by applying Lagrange interpolation to the
tuples (o, T (). They recover the secret by computing
f(0) mod p=s.

Shamir secret sharing is additively homomorphic but is
not multiplicatively homomorphic. If it is required to per-
form multiplication using Shamir secret shares, a special
“degree reduction step” is required (as will be detailed
below).

Secret Sharing by the Dealer

According to an embodiment of the invention, secret
sharing among n participants (clouds) is possible using a
polynomial of degree m<n-1. In this case, the dealer selects
random polynomials P(x) of degree m and distributes n
points to the participants, while the value P(0) is the secret.

In one example, P(x) may be selected with a degree
greater than n-1, where the missing points for defining P(x)
are points with P(x)=0. In this example, the extra points are
held by the dealer as an extra security key for interpretation
of the polynomial to reveal the secret P(0). The additional
P(x)=0 points are closed under additions and multiplica-
tions.

In case of secure multiparty computation with a bounded
number of computations (as in e.g., the accumulating
automata and SSS) where the number of participants is
small, it is possible to manage the values by restricting the
keys to be the roots of P(x). Thereby, this type of polyno-
mials allows additions and multiplications while preserving
the secret key (the roots) unchanged, as the addition of these
polynomials which have a zero value at a point X remains
zero. The same applies when the polynomial is multiplied by
a number). When two polynomials are used as an operand in
computation such that they both share the same roots (which
are additional secret keys), then every computed value

US 10,467,389 B2

7

(following addition and multiplication) results in a polyno-
mial (possibly with higher degree in the case of multiplica-
tion) for which by the set of indexes in which the value is
zero is unchanged. Thus, the additional secret keys are
unchanged.

The applications of such a scheme are relevant to all
secret sharing applications, including privacy preserving in
communication and in data (e.g. cloud). The security is not
based on one-way-function assumption, but on the need to
guess the secret keys which are actually the roots/values of
the polynomials. The difficulty to guess these points grows
exponentially with the number of missing points (keys).

Private String Matching

A secret string matching algorithm using Accumulating
Automata has been disclosed in “Accumulating Automata
and Cascaded Equations Automata for Communicationless
Information Theoretically Secure Multi-Party Computation”
(S. Dolev, N. Gilboa and X. Li, Cryptology ePrint Archive,
Report 2014/611, 2014—also published as an international
patent application WO 2014/174516). This string-match
algorithm runs on several cloud servers. The strings to be
compared are originally secret shared using Shamir secret
sharing scheme (possibly using unary representation of the
compared characters, multiplication of the secret shared
used for unary representation of the corresponding bits of
the string to be matched and the data it should be match with,
secret shares of one bit with another and summation that
result in secret shared 1 if there is a match and O otherwise.
This can be repeated for every character in the strings and
multiplication among the results getting secret shared 1
when the match is true and 0 otherwise), and therefore stay
unknown to the processing servers. During the entire pro-
cess, the participating clouds do not communicate with each
other.

Unary Representation

The comparison of two strings represented in secret
shares is different from the comparison of strings in a
plaintext format, as each of the participants cannot judge the
compare result independently. The scheme of “Accumulat-
ing Automata and Cascaded Equations Automata for Com-
municationless Information Theoretically Secure Multi-
Party Computation” has been applied over unary letter
representation, where each letter is represented by a binary
number with hamming weight 1. For example, letter a-z are
expressed by the binary strings: a=[100 00];
b=[010 . .. 00]; c=[001 . . . 00]; z=[000 . . . 01] with each
representation consists of 26 bits. The expression

S=2_ou~v;

is used to compare two letters, where [ugu, . . . u,] and
[vov, . . . V,] are two unary representations. It is clear that
whenever the two representations are identical, S is equal to
1, otherwise S is equal to 0. Assuming that each cloud has
the secret shares of these two representations, i.e.,

(afi()) and (a,g(er)), where fi(0)=1; and g;(0)=v;

The following equation can be computed to identify
whether the two letters are identical:

r)
> @ xg@).

i=1

Lemma 1: If the two letters are identical, then the result
of Equation (1) is the secret share of 1, otherwise the result
of this equation is a secret share of 0.

5

20

30

35

40

45

50

55

60

8

Proof-u,, v, are the secret bit and would be either 1 or 0.
If

fit(e) and g;'(@)

denote the evaluation of f(x) and g(x) at point a without
the constant term respectively. It can be seen that

fil@)xgi(@) = (f (@ +u) X (g (&) +vy)

= fl(@)g! (@) + uigl (@) + vi f{ (@) + wiv;

= Fla) + wy;,

where F(o)=f, (o)g, (a)+u,g, ()+vf; (o).
f(a)xg,(ct) can he seen as a secret share of u,v,.

It is clear that only when u,=v,=1, f(a)xg,(ct) is a secret
share of 1, and otherwise it is a secret share of Value 0. Since
the Hamming weight (the Hamming weight of a string is the
number of symbols that are different from the zero-symbol
of the alphabet used) of unary representation is only 1, one
can directly find the finial summation is at most 1 which
concludes the result. Based on Lemma 1, it is easy to
compare a string using Accumulating Automata, which is a
type of finite automata. Only when the string letters are
exactly the same, the last node will be set to 1, otherwise this
node will stay at 0. One can reconstruct the values of this
node to identify whether the string matching is successful or
not.

Binary Representation:

The main drawback of unary representation is that it has
too many redundant bits. For example if one wants to
represent the numbers 1 to 1000, 1000 bits should be uses.
An alternative method is to use binary representation. How-
ever, comparing two letters in binary form secretly is similar
to string matching and slightly more complicated.

Assuming that there are two letters represented as
[uos; - - ., w]2 and [vyv, . . ., v,]2, where ui,viE{0,1}.

These letters are compared using the Algorithm 1 below:

Therefore,

Algorithm 1 Secret comparison of two letters using binary
representation

cfori=1tordo

s = - v

: end for

S=0
cfori=1tordo
S=8S+s-Sxs;
: end for
rreturn 1 - S

0~ Oy U AW N =

> Compatible with unary

As a simple example, consider two binary strings [1010],
and [1101],. According to the description above, we the
following computations are performed:

Bitwise subtract, [1, 0, 1, 0]-[1, 1, 0, 1]=[1-1,0-1,
1-0,0-11=[0,-1, 1, -11;

Bitwise squaring, [0%, (-1)?, 1% (-1)*][0, 1, 1, 1];

Bitwise OR, S=0I11111=1 (Step 6 in Algorithm 1 is
equivalent to the bitwise OR operation)

It is easy to check that if the two strings are equal, S is
equal to 0 and otherwise to 1. In this example, the value of
S is 1. In order to return the same value as the unary
representation, it is preferred to return 1-S rather than S.
Only the subtraction/addition and multiplication are used in
the above algorithm, similarly to the unary case. These
operations can also be implemented using Shamir secret
sharing, particularly representing 1 by secret shares as well.

US 10,467,389 B2

9

However, compared with unary representation, it requires
either more participants or (more) degree reduction opera-
tions.

One Instruction Computer Set

As mentioned above, the classic CISC command list
consists of hundreds of different instructions. If these
instructions are employed using the Shamir Secret sharing,
extra calculations should be performed to identify different
instructions, which may reveal information on the executed
program. Therefore, a single instruction architecture (also
called One Instruction Set Computer, OISC) is applied here.

OISC is an abstract machine that uses only one instruc-
tion. It is proven that OISC is capable of being a universal
computer in the same manner as traditional computers with
multiple instructions. This indicates that one instruction set
computers are very powerful, despite the simplicity of the
design, and can achieve high throughput under certain
configurations. Since there is only one instruction in the
system, it needs no identification to determine which
instruction to execute. Thus, it is only needed to design the
implementation of one instruction. Later, in order to increase
efficiency, a SUBLEQ (commands in each PC address) is
executed and the result of the right one is blindly selected.

Actually, there are several options for choosing the OISC
instruction, such as Subtract And Branch If Not Equal To
Zero (SBNZ), Subtract And Branch If Less Than Or Equal
To Zero (SUBLEQ), Add And Branch Unless Positive
(ADDLEQ). Among these instructions, SUBLEQ is the
most commonly used. Nowadays, there are a SUBLEQ
complier and a SUBLEQ-based processor, which make
SUBLEQ a practical and efficient choice. Therefore, the way
how to simulate SUBLEQ privately and secretly is
described.

Comparing the values of two memory words that are
represented by secret shares, is hard to implement. There-
fore, the words are secret shared bit by bit, the arithmetic is
performed over secret shared bits and then branch is per-
formed, according to the sign bit of the result. This leads to
a novel scheme for executing Shamir Secret Shared SUB-
LEQ (SSS-Subleq) programs, as described below.

SSS-SUBLEQ Programs and their Execution

Since the proposed architecture is built on SUBLEQ, any
client programs written by high-level languages first needs
to be compiled into SUBLEQ codes. Then the client
executes the set of SUBLEQs over the system.

The SSS-Subleq Format and Architecture

According to the definition of Subleq, it has three param-
eters A,B,C where the contents at address B are subtracted
from the contents at address A, and the result is stored at
address B, and then, if the result is not greater than 0, the
execution jumps to the memory address C, otherwise it
continues to the next instruction in the sequence. The pseudo
code of Subleq is as follows:

Procedure SUBLEQ(A, B, C)

: Mem[B] = Mem[B]-Mem[A]
: if Mem[B]= 0 then

goto C

: else

goto PC + 1

rend if

[N I N VLR

The parameters A, B, C are secret shared, and therefore,
they are not revealed in any stage of execution. This way,
each participating cloud executes an unrevealed portion of

10

15

20

25

30

35

40

45

50

55

60

65

10

the program with unrevealed instructions. Also, jumping to
the memory address C in each cycle is also unrevealed.

Here, the PC (Program Counter) is a pointer that indicates
the address of next instruction. The SUBLEQ contains some
important operations: load, store, subtraction and condi-
tional branch. Thus, in order to execute a SUBLEQ using
SSS, the following operations should be simulated using
secret shares:

LOAD(H): Load the instruction in address H to the
processor.

JUMP(C): Transfers control to index C, implement the
branching operation.

READ(X): Read the data at address X.

WRITE(X; Y): Write the data Y in address X.

Here, the operation goto PC+1 and goto C can be imple-
mented by the operation JUMP with different parameters.
Among all these operations, a critical problem is how to find
the right address secretly. Secret string matching allows
implementing these operations without revealing any infor-
mation.

For simplicity, unary representation is used to represent
the addresses including memory addresses and instruction
indices, where each bit of the unary representation is
encoded as a secret shared value. The format of the SSS-
Subleq instruction has five parts, which are shown in FIG. 1.

The first block stores the instruction index number, which
is equivalent to the instruction address. The second and the
third blocks store the operand addresses and the fourth to
fifth blocks store the branch index C and the index of next
instruction, respectively.

Besides the former operations, there is a need to imple-
ment the subtraction between two operands and determine
the next instruction address according to the subtraction
result. Therefore, every operand is represented as a signed
number. In order to perform subtraction in an easy way, a
Two’s complement representation (a mathematical opera-
tion on binary numbers, as well as a binary signed number
representation based on this operation) is used, where sub-
traction can be transformed into addition. The most signifi-
cant bit (MSB) is the sign bit. Analogous with the address,
each bit of the operands is secret shared.

The outline of the proposed RAM architecture is pre-
sented in FIG. 2. The proposed RAM architecture use a
modified Harvard architecture (a variation of the Harvard
computer architecture that allows the contents of the instruc-
tion memory to be accessed as if it were data. The original
Harvard architecture computer, the employed entirely sepa-
rate memory systems to store instructions and data. The
CPU fetched the next instruction and loaded or stored data
simultaneously and independently. This is in contrast to a
Von Neumann architecture computer, in which both instruc-
tions and data are stored in the same memory system and
(without the complexity of a CPU cache) must be accessed
in turn. The physical separation of instruction and data
memory is sometimes held to be the distinguishing feature
of modern Harvard architecture computers. With microcon-
trollers (entire computer systems integrated onto single
chips), the use of different memory technologies for instruc-
tions (e.g. flash memory) and data (typically read/write
memory) in von Neumann machines is becoming popular.
The true distinction of a Harvard machine is that instruction
and data memory occupy different address spaces. A
memory address does not uniquely identify a storage loca-
tion as it does in a Von Neumann machine. It is required to
know the memory space (instruction or data) to which the
address belongs) which not only physically separates storage
and signal pathways for instructions and data, but also

US 10,467,389 B2

11

separates the read-only and read/write part of data. Since
SSS is not multiplicatively homomorphic, degree reduction
is needed after several multiplications. This special structure
allows implementing READ and WRITE operations in
relatively efficient manner. In particular, the degree of the
polynomials used for the read-only part (possibly big-data
corpus) is unchanged throughout the execution(s).

The parameters of the proposed architecture are presented
in Table 1.

TABLE 1

The parameters of a program

Parameter Description

m The number of instructions of the user program

n The number of data items that can be accessed for read and
write

k The number of data items that can be accessed for read only

-

The bit length of the data stored in the memory

Here, it is assumed that the client program reads a large
number of data items compared with the data items the
program writes to, thus k>>n.

The following description shows how to simulate the four
basic operations using the Accumulating Automata tech-
nique.

Operation Details

The implementation of a function called: compare(U; V;
r) will be described first, where U and V are secret shares of
the unary address consisting of r elements. For example,
U=u,, U,, ..., u,and V=v, v,, . . ., v, denote the secret
shares of two such parameters. The following computation
is performed:

-
compare(U, V, r) = Z (u; Xv;)
i=1

Analogous to Equation (1), the above expression testifies
whether U, V are identical or not. Based on Lemma 1 above,
it is clear that the result of compare (U, V, r) is a secret share
of 1 if U=V, and is 0 if U=V.

Procedure LOAD(H)

1: fori=1 tomdo

2: Num,; < compare(H, n,, m)
3: S, < S, + Num,; x A;

4: S5 < S5 + Num; x B;

5: S3 < S3+ Num; x C;

6: S, < S, +Num,;x (PC, + 1)
7: end for
8: return S,1S5/[S;8 4

Procedure JTUMP(C)

1:PC < C
2: LOAD(PC)

Procedure READ(X)

l:fori=1ton+kdo
2: Num; < compare(X, €, n + k)

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

Procedure READ(X)

3: S« S+ Num,;x 0,
4: end for
5: return S

Procedure WRITE(X, Y)

1: fori=1tondo

2: Num; < compare(X, €;, n + k)
3: 0,« 0,+ Num, x (Y -6,

4: end for

Description of LOAD:

The initial values of Si are set to 0, and the symbol k
means concatenation of all values from S1 to S4. H repre-
sents the secret shares of the instruction address which we
want to load and i represents secret shares of the i-th
instruction address. Based on Lemma 1, it is possible to
check that only when the two addresses are identical, the
result of function compare is 1, otherwise the result is 0.
Thus, the value returned is the right instruction to be loaded.

Description of JUMP:

The operation JUMP is nearly the same as the operation
LOAD. If the program needs to execute the C-th instruction
in the program table, it just assigns the last part of current
instruction to the PC. Then the program will “jump” to the
destination.

Description of READ:

According to FIG. 2, the format of the memory table
consists of two parts: the address number &, and data 6,.
Analogous to the corresponding analysis for the LOAD
operation, it is possible to check that S is the data whose
index number is equal to X.

Description of WRITE:

The operation implements writing the data Y in the
address X using secret shares. Only when &, equals X, the
Num, is the secret shares of 1, and then the data Y can
substitute the former data item, otherwise the data will not
be changed.

Implementation of SSS-Subleq

The subtraction of operands when they are represented by
secret shares will be described below. According to Subleq
definition, the result of subtraction should be compared with
zero for conditional branch. However, it is difficult to
compare two numbers directly, since all the numbers are
secret shared and the clouds never know the secrets. Here,
Two’s complement representation is used to represent the
operands and using the sign bit to simulate the comparison.
In two’s complement representation, the sign bit of positive
integer is 0 and negative integer is 1. Therefore, when
implementing SUBLEQ (A,B,C), we can use the sign bit of
Mem[B]-Mem[A] to (blindly) decide whether to branch or
not. The only problem is that the integer 0, for which the sign
bit in its representation is also O, while it should imply
branching. This problem can be fixed by a slight modifica-
tion:

The sign bit of Mem[B]-Mem[A]-1 is used instead of sign
bit of Mem[B]-Mem][A].

The new sign bit is 0 if Mem[B]>Mem[A], and 1 if
Mem|[B]=Mem[A] which satisfies the branch condition of
Subleq. Moreover, this sign bit can be obtained during the
computation of Mem[B]-Mem[A], as will be described
below.

US 10,467,389 B2

13

Two’s Complement Subtraction
The advantage of using Two’s complement is the elimi-
nation of examining the signs of the operands to determine
if addition or subtraction is needed. Therefore, to compute
subtraction f-a, it only needs to perform following steps: 5
Convert o Invert every bit of o and add one, denoted by
a+l.
Addition: Perform binary addition and discard any over-
flowing bit, denoted by B+o+1.
The sign bit of p—a-1 is required, as well. As described 10
above, using Two’s complement representation, the subtrac-
tion f-a is converted to

B+a+l

Similarly, the subtraction f-a-1 is implemented as 15

B-a-1=p+o+1-1=P+a
The similarity allows us to implement these two subtrac-
tions together.

The algorithm for Two’s complement subtraction using
SSS is given in Algorithm 2 below.

14

Degree Reduction

The main bottleneck the proposed scheme is the multi-
plication with shares used in the basic operations, as the SSS
is additional homomophic but not multiplicatively homo-
morphic. Multiplying two polynomials gives a polynomial
with a degree that is equal to the sum of the degrees of the
source polynomials. This implies that the client has to use
more shares to reconstruct the secret after multiplication.

Algorithm 4: Polynomial degree reduction for secret shares

1: Procedure Dz cpzasz (P(x),d,d*)

2: Let uy, ..., uz be E participants, D be the randomizer and R be
the reducer.

3 Let P(x) € Fp[x] of degree d is the polynomial for secret s.

4 D randomly selects polynomial f(x) of degree d and g(x) of

degree d*, where f(x) and g(x) have the same constant term.

5t fori=1to E do

6 D sends (f(u,),g(uy)) to u,.

7 u; computes P(u;) + f{u;) and sends it to R.

8 end for

Algorithm 2: The two’s complement substraction using Shamir secret sharing

1: Procedure SSS-SUB (A, B)
2: Input: A = [a,_,a, »...834], B =
of bits of two’s complement represented number.

[b,_1b, 5...b bo] where a;b; are secret shares

3: Output: R = [1,_ 1, 5..115] where R = B — A, and the sign bitof B- A -1

4: a,=1-aq

5: carry[0] = ag - by

6: rg=ag+ by - 2 carry[0]

7: fori=1tot-1do

8:ra;=1-4a;

9:r;=a;+b, - 2ab,

scarry[i] = ab; + carry[i- 1] - 1;
r=1;+carry[i- 1] -2 - canry[i—- 1] - 1;
: end for

rsign=r, |

: carry[0] = rg

tro=1-14

ri=ltot-1

: carry[i] = 1, - camy[i - 1]

tr =1+ carry[i — 1] - 2 - carry[i]
: end for

: return (R || sign)

: end procedure

Olnvert of the least significant bit
< Addition of the least significant bit
Oinvert each bit A < A

O The carry bit
& The result bit

& The sign bit of B - A - 1, used for branch
<& Add 1 to the result obtain B - A

According to the proof of Lemma 1, the multiplications

45
and additions/subtractions of the shares corresponding to
those of the secrets are known. Thus, one can easily check
that Algorithm 2 implements the two’s complement subtrac-
tion.

Subleq can be implemented with secret shares using by so
Algorithm 3.
Algorithm 3: The Shamir secret sharing based Subleq
1: Procedure SSS-Subleq (A, B, C) 55
2 R, < Read(A)
3 R, < Read(B)
4 (R| Num) = SSS-SUB (Ry, R,)
5 Write(B, R)
6 Jump (Num - C + (1 — Num) - (PC + 1))
7: end procedure 60

In step 6 of Algorithm 3, it is possible to check that if the
value represented by R2 is less than R1, then Num=1, PC=C,
else Num=0, PC=PC+1.

Therefore, the expression of Step 6 implements the con-
ditional branch of Subleq.

65

-continued

Algorithm 4: Polynomial degree reduction for secret shares

9: R interpolates and computes a polynomial Q(x) = P(x) + f(x).

10: fori=1to E do

11: R sends to u, the coeflicients q; of Q(x) with degree more than d*.
12: u; computes S = P(u,) + f(u,) - Zj;d*,rldqju’ - g(uy).

13: returmn S .

14: end for

15: end procedure

The READ, JUMP and LOAD increase the polynomial
degrees related to each secret shared bit stored in the
registers and the subtraction and WRITE increase the
degrees related to the data items stored in the memory.
Therefore, a degree reduction process for these data items
should be carried out at a certain time. Standard techniques
for reducing the degree using communication can be used
here. One possible procedure for degree reduction is by
using the article “Swarming Secrets” (Dolev et al., 47th
Annual Allerton Conference, 1438-1445, 2009) proposes a
method for reducing the polynomial degree without reveal-
ing the original secret. The model proposed by the present
invention defines a reducer that is in charge of reducing the

US 10,467,389 B2

15

polynomial degrees and a randomizer in charge of generat-
ing random polynomials for all the participants. The codes
of the reducer and the randomizer should be executed
independently, in order to protect the secrets, but either of
them can be executed by the dealer machine. The polyno-
mial degree reduction algorithm appears in Algorithm 4
(The original algorithm is designed for bivariate polynomial,
so it has been modified accordingly).

Different from the “Swarming Secrets” algorithm, the
random polynomials f(x) of degree d instead of d* is used.
It is clear that adding f(x) to P(x) can hide all the coefficients
of P(x) which prevent the reducer from obtaining any
information about the secret s.

In addition, another random polynomial g(x) of degree of
d* is used is used, where the constant term of f(x) and g(x)
are identical. In the end of Algorithm 4, each cloud subtracts
g(u,) from the result which will keep the secret s unchanged
(the change in the values of other coeflicients of the poly-
nomial does not influence the secret value). To protect the
secrets, for every degree reduction, the random polynomial
f(x), g(x) should be updated. In practical implementation,
the dealer (with no randomizer) can secret share these
polynomials to the clouds in advance or let clouds interact
with the randomizer, thereby supplying on-line these f(x)
and g(x) pairs upon request and the degree reduction process
is performed with no involvement of the dealer during the
execution.

Algorithm 5: The SSS-Subleq plus degree reduction

1: Procedure SSS-8;z;20-DR (A, B, C)

2: Decrease(A || B || C || PC + 1,3L1)

3 R, < Read(A)

4: R, < Read(B)

5: R | Num = SSS - SUBR,, R,)

6 Decrease(R || Num,*,1)

7. Waye(B, R)

8: Jump(Num-* C + (1 — Num) - (PC + 1))
9: end procedure

In the architecture proposed by the present invention, the
read/write memory is separated from the read-only memory.
This design is more convenient for degree reduction, com-
pared to conventional architecture. The reduction step is
performed before the WRITE and JUMP operations. Com-
pared with the whole memory space,

the number of read/write registers is very small, thus, the
number of items for which we need to reduce the degree is
relatively small. Assuming that both the addresses and data
items are secret shared using the polynomials of the same
degree A, plus degree reduction step, the Subleq can be
implemented as in Algorithm 5. In step 6 of Algorithm 5, *
is used instead of the exact degree parameter, as each secret
shared bit of R has different polynomial degree.

Applications

In the proposed model, it is assumed that a client wishes
to outsource the execution of a program among E clouds and
the program is compiled into a SUBLEQ-based program.
The address is encoded using unary representation and the
data item is encoded using Two’s complement representa-
tion. The dealer picks random polynomials of degree A to
share every bit of the address and data. Then the dealer sends
the secret shared program to E clouds. The integer E should
be greater than the highest polynomial degree generated
during Algorithm 5.

The participating clouds do not communicate with each
other and are possibly not aware concerning the number and
identity of the other participants.

25

30

35

40

45

16

Initial Stage

The PC of each cloud is initially set by the dealer. The
values of the PC are the secret shares of the first address of
the client’s program. In case when there is no randomizer in
the system, the dealer can guarantee that each cloud has
enough pre-computed values of polynomials to be used for
degree reductions during the execution.

Execution Stage

In this stage, the clouds have to perform the following
tasks:

Program Execution: Each cloud executes the secret shared
program independently and does not communicate with
other clouds.

Degree Reduction: Each cloud performs Algorithm 4 to
reduce the polynomial degree of the shares which increased
during the Subleq procedure. Furthermore, every cloud may
record the communication with the randomizer and reducer
for audit, revealing possible malicious reducers. A possible
strategy is to use several reducers simultaneously. After each
cloud received the answers from the reducers, the could
compares these results and notifies the client/dealer whether
the reducers were malicious or not. Similarly the actions of
the randomizer can be monitored, for example, by forward-
ing the values sent by the randomizer to the reducer, while
requesting the reducers to reveal all coefficients and not use
these values, and requesting new values from the random-
izer.

Memory refresh: Although the polynomial degree of the
shared secret has been decreased before WRITE operation,
the WRITE operation does increase the polynomial degree
by A each time. Thus, the read/write part of memory needs
to be refreshed at intervals (e.g., every ten WRITE opera-
tions). This part of the memory can be relatively small
compared to the entire memory, so it will not lead to too
much bandwidth usage.

FIG. 3 illustrates the outline of the proposed RAM model
and its use for the program execution. The communication
between the clouds and the dealer and the communication
between the clouds and the reducer(s) are all bidirectional.
The dealer sends the secret shares of the client program and
receives and reconstructs the program results executed by
the various clouds. It is possible to use more than one
reducer in order to check the integrity of the results and
identify which reducer is malicious. The dealer (and
reducer(s)) may share common roots of all polynomials,
unknown to the participating clouds, where addition and
multiplications keep the roots unchanged. These unknown
roots can serve as additional keys, since the number of
possible roots grows exponentially with the degree of the
polynomials.

Storage and Bandwidth

The storage of each cloud consists of the secret shares of
the program instructions and the data. Secret share of one bit
needs one or multi-word size storage which is denoted by
w(1).

Data Table

Each row of the data table consists of the index and data
item, it totally requires (n+k)(n+k+t)m(1) words storage. As
previously assumed, the size of read-only table is much
bigger than that of the read/write table, i.e., k>>n, the
storage requires roughly O(k*)w(1) words.

Instruction Table

The cloud stores an instruction table of size m, and each
instruction consists of five parts. This requires O(m) blocks
of storage, while each block requires O(3m+2 n+2 k)w(1)
words.

US 10,467,389 B2

17

Degree Reduction Table

According to the corresponding description of Algorithm
4, if a randomizer (or several randomizers) are used to
produce secret shares of random polynomials on-line, no
tables are needed. Otherwise, every cloud needs to store a
certain amount of shares which are pre-computed and dis-
patched by the dealer. These values could be generated and
managed by a special database. The size of this database
depends of the execution length of the program.

Bandwidth

For each Subleq, the clouds need to reduce the polynomial
degrees of their data twice via communication with the
reducer (and the randomizer). For each degree reduction
from d to d*, every cloud first obtains two shared evalua-
tions from the randomizer, and then sends to the reducer one
word and receive d-d* coefficients from it, resulting in a
total of approximately O(k+m+t)w(1) words bandwidth used
per cloud for one Subleq. In addition, the read/write memory
needs to be refreshed at interval, it will result in O(kt)mw(1)
words bandwidth usage. Therefore, in the worst case, the
bandwidth of each cloud is O(kt)w(1).

According to another embodiment, a program to be
executed by untrusted participants may remain unrevealed
by using a fixed set of commands that appear in a fixed order,
rather than using only the SUBLEQ command. According to
this embodiment, other OISC, RISC, Ultra-Reduced Instruc-
tion Set Co-Processor (URISC), or even other type of
commands may be added.

For instance, a compiler from high language such as a C
compiler will produce programs only in the style of, where
addresses are secret shared (as illustrated above):

Address=100: Opcodel, address, address, address,
Opcode2, address, address, address

Opcodek, address, address, address

Address=101: Opcodel, address, address, address,

Opcode2, address, address, address .
address, address

Address=102: Opcodel, address, address, address

As all programs consist of the same sequence of opcodes,
no information will be revealed regarding the program to be
protected, still the execution may blindly select the result of
(the) one (desired) opcode. Therefore, the computation
power is at least as good as using only Subleq, but can be
dramatically better as other opcodes and operations will be
implemented.

Security Analysis

During the whole procedure of the proposed model, all of
the information are secret shared among E clouds and no
original information will be leaked to the cloud itself.

Also, the proposed model has two characteristics:

Security against adversary eavesdropping;

For every LOAD operation, procedure compares the
values stored in PC with all the indices in program table. It
“touches” every position in the program table. Even through
the adversary could eavesdrop on all the contents of PC,
registers, etc., the adversary could not know which instruc-
tion in the table was executed. The same thing also happens
in read/write operations. The characteristic is similar to the
schemes that are based on fully homomorphic encryption,
but is information-theoretically secure.

Security Against Malicious Clouds

A malicious server can corrupt data in storage and deviate
from the prescribed protocol, particularly, not performing
execution correctly. However, the program is outsourced to
E clouds. Even if some of them output the wrong answers,
the client can compare the results interpolated from different
set of answers and obtain the correct result, or better off, use

.. Opcodek, address,

10

15

20

25

30

35

40

45

50

55

60

65

18
the method for error correction for algebraic block codes,
described for example, in U.S. Pat. No. 4,633,470.

Unary vs. Binary

The proposed scheme uses the unary representation for
the instruction and data addresses. This type of representa-
tion is inappropriate if the clients program is very large
because of its redundant bits. In a secret shared form, n
words must be used to represent these n bit, which will lead
to many operations over Fp. As described above, binary
representation can be used as a substitution. Compared with
unary representation, binary representation can express
exponentially more numbers with the same number of bits.
However, using binary representation to perform secret
string matching is more complicated and will require more
degree reduction operations. In practical implementation,
one can choose the representation based on the consideration
of their memory and computation capacity.

The above examples and description have of course been
provided only for the purpose of illustration, and are not
intended to limit the invention in any way. As will be
appreciated by the skilled person, the invention can be
carried out in a great variety of ways, employing more than
one technique from those described above, all without
exceeding the scope of the invention.

The invention claimed is:

1. A method of providing a distributed scheme for execut-
ing a random access memory (RAM) program, without
revealing any information regarding said program, the data
and the results, comprising:

a) simulating the sequence of instructions of said program
using one instruction set computing (OISC) or subtract
and branch if less than or equal to zero (SUBLEQ)
instructions having predefined parameters A, B, C
being memory addresses, where the contents at B are
subtracted from the contents at address A, and the result
is stored at address B, and then, if the result is not
greater than O, the executing jumps to the memory
address C, or otherwise, said execution continues to the
next instruction in the sequence;

b) dividing the execution of said program among a
plurality of participating computational resources or
clouds which do not communicate with each other;

¢) hiding the nature of operation and the sequence of
operations of all the program’s OISC or SUBLEQ
instructions by secret sharing said parameters;

d) secretly performing private string matching by com-
paring strings represented in secret shares, for ensuring
the execution of the right instruction sequence by:
d.1) comparing strings of secret shares of characters to

be matched;

d.2) multiplying secret shares of corresponding bits of
each string to be matched by the data said string
should be matched with, one bit with another;

d.3) performing summation that result in secret
shared="1" if there is a match and in secret
shared="0" otherwise;

d.4) repeating steps d.1) and d.2) for every character in
said strings, while performing multiplication among
summation results;

e) performing arithmetic operations over secret shared
bits by manipulating the secrets directly, while hiding
said program and data during the entire execution time;

) performing branch operations according to the secret
shared sign bit of the result.

2. A method according to claim 1, wherein secret sharing

is performed according to Shamir’s secret sharing, using
random polynomials by allowing a dealer to:

US 10,467,389 B2

19

a) select additional points, X, such that, P(x)=0 when
choosing the random polynomials P(x);

b) distribute n points having x values which are different
from the x values of these additional points in P(x)=0,
while storing said additional points to itself as an
additional secret for revealing the polynomials value.

3. A method according to claim 2, wherein whenever
performing multiplication operation is required, performing
degree reduction of the polynomial used for secret sharing.

4. A method according to claim 2, wherein the dealer
reconstruct the polynomial and the secret, using the n points
of said polynomial that are maintained by the participating
clouds with the additional points that are maintained by said
dealer.

5. A method according to claim 2, wherein the keys are
restricted to be points in which the polynomial is zero for
every value, thereby allowing additions and multiplications
while preserving the secret key unchanged.

6. A method according to claim 1, wherein string match-
ing of secret shares is performed according to the scheme of
Accumulating Automata and Cascaded Equations Automata
using unary, binary or other representations, and secret
shares of the searched pattern.

7. A method according to claim 1, wherein secret shared
Subleq is created using a unary representation to represent
the addresses including memory addresses and instruction
indices, where each bit of the unary representation is
encoded as a secret shared value, where the first block stores
the instruction index number, being equivalent to the
instruction address, the second and the third blocks store the
operand addresses and the fourth to fifth blocks store the
branch index and the index of next instruction, respectively.

8. A method according to claim 1, wherein subtraction is
performed by representing every operand as a signed num-
ber using a Two’s complement representation and trans-
forming subtraction into addition, such that the most sig-
nificant bit is the sign bit.

9. A method according to claim 2, wherein the dealer
divides the execution among participating clouds by:

a) encoding the address using unary representation;

b) encoding the data item using Two’s complement rep-

resentation;

¢) allowing said dealer to pick random polynomials of
degree to share every bit of the address and data; and

d) allowing said dealer to send the secret shared program
to E participating clouds, such that the integer E is
greater than the highest polynomial degree generated.

10. A method according to claim 1, wherein all programs
consist of the same sequence of opcodes, where the execu-
tion may execute all opcodes and select only the one
intended.

11. A method according to claim 1, wherein instead of
using only a SUBLEQ command, a program to be executed
by untrusted participating clouds may remain unrevealed
using a fixed set of commands that appear in a fixed order.

12. A method according to claim 1, wherein the RAM
program uses a modified Harvard architecture which physi-
cally separates storage and signal pathways for instructions
and data.

13. A method according to claim 1, wherein the RAM
program separates the read-only and read/write part of data.

14. A method according to claim 3, further comprising
reducing the degree of the polynomials after a predeter-
mined number of multiplications.

15. A method according to claim 3, wherein the degree of
the polynomials used for the read-only part is unchanged
throughout the execution(s).

20

35

40

45

55

20

16. A method according to claim 1, wherein the read/write
part of the memory is refreshed at intervals of several
WRITE operations.

17. A method according to claim 10, wherein the execu-
tion is performed blindly, and is defined by the operands
addresses, some of which are designed to have no effect.

18. A method according to claim 1, wherein the compu-
tational resource(s) consists of one or more clouds.

19. A method according to claim 1, wherein the program
is run over one or more computational resources, such that
possible leakage may reach the same vendor or country or
entity.

20. A method according to claim 1, wherein the program
is run over one or more computational resources, such that
possible leakage may reach competing, non-collaborating,
vendors or countries or entities.

21. A method according to claim 1, wherein the OISC
instruction is SBNZ, SUBLEQ, or ADDLEQ instruction.

22. A system of providing a distributed scheme for
executing a random access memory (RAM) program, with-
out revealing any information regarding said program, the
data and the results, comprising:

a) a compiler for simulating the sequence of instructions
of said program using one instruction set computing
(OISC) or subtract and branch if less than or equal to
zero (SUBLEQ) instructions having predefined param-
eters A, B, C being memory addresses, where the
contents at B are subtracted from the contents at
address A, and the result is stored at address B, and
then, if the result is not greater than 0, the executing
jumps to the memory address C, or otherwise, said
execution continues to the next instruction in the
sequence;

b) a plurality of computational participating clouds, each
of which is a adapted to execute a portion of said RAM
program;

¢) a computerized dealer, being in bidirectional commu-
nication with said clouds, for dividing the execution of
said program among said clouds to program portions
using secret sharing of said parameters, based on ran-
dom polynomials and for and composing the result of
executing said program by collecting partial results,
each of which being the outcome of executing a portion
of said RAM program assigned to a cloud;

d) at least one processor for secretly performing private
string matching for ensuring the execution of the right
instruction sequence, said at least one processor is
adapted to:

d.1) compare strings of secret shares of characters to be
matched;

d.2) multiply secret shares of corresponding bits of
each string to be matched by the data said string
should be matched with, one bit with another;

d.3) perform summation that result in secret
shared="1" if there is a match and in secret
shared="0" otherwise;

d.4) repeating steps d.1) and d.2) for every character in
said strings, while performing multiplication among
summation results;

e) at least one computerized randomizer being in bidirec-
tional communication with said clouds, for providing
said random polynomials to said clouds; and

f) at least one computerized reducer being in bidirectional
communication with said clouds, for reducing the
degree of polynomials in response to the execution of
multiplication instructions, without revealing the
secret.

US 10,467,389 B2
21

23. A system according to claim 22, wherein several
reducers are used for checking the integrity of the results and
in case of non-integrity, identifying which reducer is mali-
cious.

24. A system according to claim 22, wherein the dealer 5
and the reducer(s) share common roots of all polynomials,
unknown to the participating clouds, such that additions and
multiplications keep the roots unchanged.

#* #* #* #* #*

22

