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(57) ABSTRACT

A method of securely executing practically unbounded input
stream of symbols, by non-interactive, multi-party compu-
tation, according to which the input stream is distributed
among a plurality of parties, which do not communicate
among themselves throughout execution, by a dealer with a
secret initial state. The dealer distributes shares of the secret
state between the parties. The input stream is executed by a
finite-state automaton which may be an accumulating
automaton with accumulating nodes or an automaton that is
defined by a series of cascaded equations. During any
execution stage, the input stream and the current state of the
original automaton are concealed from any coalition of
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participants being smaller than a given threshold. Upon
receiving a signal from the dealer, the parties terminate the
execution and submit their internal state to the dealer, which
computes the current state that defines the computation
result.
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1
ACCUMULATING AUTOMATA AND
CASCADED EQUATIONS AUTOMATA FOR
NON-INTERACTIVE AND PERENNIAL
SECURE MULTI-PARTY COMPUTATION

RELATED APPLICATIONS

This application is a 35 U.S.C. 371 national stage filing of
International Application No. PCT/IL.2014/050372, filed on
Apr. 23, 2014, which claims priority to U.S. Provisional
Patent Application No. 61/815,748, filed on Apr. 25, 2013,
and U.S. Provisional Patent Application No. 61/870,838,
filed on Aug. 28, 2013. The contents of the aforementioned
applications are hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to the field of distributed
computing, such as cloud computing. More specifically, the
present invention is related to a method of securely execut-
ing an unbounded input stream by non-interactive, multi-
party distributed computation.

BACKGROUND OF THE INVENTION

Cloud computing is a form of distributed computing over
a network, with the ability to run a program on many
connected computers at the same time. The same concept is
also used for private storage. Such distributed computing is
directed to running applications that share data or support
the critical operations of an enterprise, with rapid access to
flexible and low cost IT resources. These services are based
on-demand delivery of IT resources via the Internet with
pay-as-you-go pricing, and are offered by several vendors
such as Microsoft and Amazon Web Services. However, the
cloud computing model cannot really protect user’s privacy,
since the user cannot be sure that there will be no leakage of
some data, on which he has no control.

Information theoretically secure multi-party computation
implies severe communication overhead among the com-
puting participants, as there is a need to reduce the polyno-
mial degree after each multiplication. In particular, when the
input is (practically) unbounded, the number of multiplica-
tions and therefore, the communication bandwidth among
the participants may be practically unbounded. In some
scenarios, the communication among the participants should
better be avoided altogether, avoiding linkage among the
secret share holders. For example, when processes in com-
puting clouds operate over streaming secret shares without
communicating with each other, they can actually hide their
linkage and activity in the cloud. An adversary that is able
to compromise processes in the cloud may need to capture
and analyze a very large number of possible shares.

If a dealer wants to repeatedly compute functions on a
long file with the assistance of in servers, the dealer does not
wish to leak either the input file or the result of the
computation to any of the servers. There are two constraints:
(1) The dealer is allowed to share each symbol of the input
file among the servers and is allowed to halt the computation
at any point (the dealer is otherwise stateless). (2) each
server is not allowed to establish any communication
beyond the shares of the inputs that it receives and the
information it provides to the dealer during reconstruction.

Secure multi-party computation (MPC) is a powerful
concept in secure distributed computing. The goal of secure
MPC is to enable a set of in mutually distrusting parties to
jointly and securely compute a function f of their private
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inputs, even in the presence of a computationally unbounded
active adversary Adv. For example, two millionaires can
compute which one is richer, without revealing their actual
worth. In secure MPC, two or more parties want to conduct
a computation based on their private inputs, but neither party
is willing to disclose its own input to anybody else.

Secure multi-party computation participants can compute
any function on any input, in a distributed network where
each participant holds one of the inputs, ensuring indepen-
dence of the inputs, correctness of the computation, and that
no information is revealed to a participant in the computa-
tion beyond the information that can be inferred from that
participants’ input and output. Like other cryptographic
protocols, the security of MPC protocol can rely on different
assumptions:

It can be computational, namely, based on the common
belief on the complexity of mathematical tasks such as
factoring, or information theoretically secure which is
unconditional secure, and usually based on secret shar-
ing schemes.

The settings in which the scheme is described may differ,
possibly assuming that participants use a synchronized
network, that a secure and reliable broadcast channel
exists, that a secure communication channel exists
between every pair of participants, such that an adver-
sary cannot tap-in, modify or generate messages in the
channel, and alike.

Secure multi-party computation can be realized in various
settings for computing general functions. However, the
general scheme may be impractical due to efficiency rea-
sons, partly due to the communication required among the
participants.

In communicationless information theoretically secure
multi-party computation over long input streams, a dealer D
may secretly share an initial value among the in servers
(participants). Subsequently, the dealer is responsible for
handling the input stream (or an input file) and distributing
appropriate shares to the participants. If the dealer is
assumed to be a stateless dealer, the dealer is allowed to
temporarily store the current input to the system, process the
input and send (not necessarily simultaneously) secret shares
of'the inputs to the participants. One of the participants may
act as the dealer, or the participants may alternate among
themselves in serving as the dealer. In such a case, one
participant communicates with the rest to convey the input
(shares), still the inherent quadratic complexity needed to
reduce the polynomial degree in the classical information
theoretically secure multi-party computation should be
avoided. Moreover, in case the input symbols have been
shared and assigned to the participants in the initialization
phase, every participant can independently (and asynchro-
nously) process the shares of the input, and sends the result
when the global output has to be determined. For example,
assigning shares of a file up-front to participants to allow
repeated search of patterns, without revealing neither the file
nor the search result to the participants. No participant
returns any information back during the execution of the
algorithm. At any point in the execution, the dealer may ask
some participants to send their results back, then the dealer
can reconstruct the actual result of the algorithm.

PRIOR ART SOLUTIONS

Multi-Party Computation

Benaloh et al (“Secret sharing homomorphisms: Keeping
shares of a secret sharing” CRYPTO, Lecture Notes in
Computer Science, pp 251-260, 1986) describes the homo-
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morphism property of Shamir’s linear secret sharing
scheme, with the help of communication to decrease the
polynomial degree. Cramer et al. (“Share conversion, pseu-
dorandom secret-sharing and applications to secure compu-
tation”, Lecture Notes in Computer Science, pp 342-362,
2005) presented a method for converting shares of a secret
into shares of the same secret in a different secret-sharing
scheme using only local computation and no communication
between players. They showed how this can be combined
with any pseudorandom function to create, from initially
distributed randomness, any number of Shamir’s secret-
shares of (pseudo)random values without communication.
Damgard et al. (“Efficient conversion of secretshared values
between different fields”, IACR Cryptology ePrint Archive,
2008) showed how to effectively convert a secret-shared bit
over a prime field to another field. By using a pseudorandom
function, they showed how to convert arbitrary many bit
values from one initial random replicated share.
Outsourcing Finite Automata

Waters (“Functional encryption for regular languages. In
Safavi-Naini and Canetti, pp 218-235 provides a functional
encryption system that supports functionality for regular
languages. In this system a secret key is associated with a
deterministic finite automaton (DFA) M. A ciphertext, ct,
encrypts a message msg associated with an arbitrary length
string w. A user is able to decrypt the ciphertext ct if and only
if the automaton M associated with his private key accepts
the string w. Motivated by the need to outsource file storage
to untrusted clouds while still permitting limited usage of
that data by third parties, Mohassel et al. (“An efficient
protocol for oblivious dfa evaluation and applications”,
Lecture Notes in Computer Science, pp 398-415, 2012)
presented practical protocols by which a client (the third-
party) can evaluate a DFA on an encrypted file stored at a
server (the cloud), once authorized to do so by the file owner.
However, all the above schemes are based on unproven,
commonly believed to be hard mathematical tasks and are
not information theoretically secure.
Perennial Distributed Computation on Common Inputs

Dolev et al. (“Secret swarm unit, reactive k-secret shar-
ing” Lecture Notes in Computer Science, pp 123-137, 2007
and “Reactive k-secret sharing”, Ad Hoc Networks, 2012)
presented the settings for infinite private computation and
presented few functions that can operate under a global
input. Dolev et al. (“Swarming secrets”, 47th annual Aller-
ton conference on Communication, control, and computing,
2009) presented schemes that support infinite private com-
putation among participants, implementing an oblivious
universal Turing machine. At each single input of the
machine, participants need to broadcast information in order
to reduce the degree of the polynomial used to share secrets.
Based on combination of secret-sharing techniques and the
decomposition of finite state automata, Dolev et al. “Secret
sharing krohn-rhodes: Private and perennial distributed
computation”, ICS, pp 32-44, 2011) proposed the first
communicationless scheme for private and perennial dis-
tributed computation on common inputs in a privacy pre-
serving manner, assuming that even if the entire memory
contents of a subset of the participants are exposed, no
information about the state of the computation is revealed.
This scheme does not assume a priori bound on the number
of inputs. However, the scheme assumes a global input
which reveals information on the computation and the
computational complexity of the algorithm of each partici-
pant is exponential in the automata number of states. Rely-
ing on the existence of one-way functions or common long
one time pads, Dolev et al. showed how to process a priori
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unbounded number of inputs for inputs over a Finite State
Automaton (FSA) at a cost that is linear in the number of
FSA states. Although the authors can hide the current state
of'the FSA, the dealer must supply the input symbols in plain
text to each participant.

Secure Computation on Data Stream

Ostrovesky et al. (“Private searching on streaming data.
Journal of Cryptology, 2007) defined the problem of private
filtering where a data stream is searched for predefined
keywords. The schemes are also implemented by Paillier
homomorphic cryptosystem. The proposed scheme has been
by reducing the communication and storage complexity.
Fully Homomorphic Encryption

Gentry et al (“Fully homomorphic encryption using ideal
lattices”, STOC, pp 169-178 ACM, 2009) presented the first
fully homomorphic encryption (FHE) scheme which is
capable of performing encrypted computation on Boolean
circuits. A user specifies encrypted inputs to the program,
and the server computes on the encrypted inputs without
gaining information concerning the input or the computation
state. Following the outline of Gentry’s, many subsequent
FHE schemes are proposed and some of which are even
implemented. However, the FHE schemes that follow the
outline of Gentry’s original construction are inefficient in
that their per-gate computation over-head is a large polyno-
mial in the security parameter and are furthermore only
computationally secure.

All the above schemes are based on unproven commonly
believed to be hard mathematical task and therefore, are not
information theoretically secure.

It is therefore an object of the present invention to provide
a method for securely executing an unbounded input stream
by non-interactive, multi-party distributed computation of a
specific type of automata.

It is another object of the present invention to provide a
method for securely executing an unbounded input stream
by non-interactive, multi-party distributed computation, in
which computation is carried out by several participants
over unbounded stream of secret shared inputs.

It is a further object of the present invention to provide a
method for securely executing an unbounded input stream
by non-interactive, multi-party distributed computation, in
which the participants do not communicate among them-
selves throughout the execution.

Other objects advantages of the present invention will
become clear as the description proceeds.

SUMMARY OF THE INVENTION

The present invention is directed to a method of securely
executing an unbounded or practically unbounded input
stream, by non-interactive, multi-party computation, com-
prising the following steps:

a) distributing the input stream among a plurality of
parties, which do not communicate among themselves
throughout execution, by a dealer (which may be
stateless) having a secret initial state, the dealer dis-
tributes shares of the secret state between the parties;

b) providing a finite-state automaton defined by a series of
cascaded equations, for executing the input stream, the
automaton being a cascade product of component
automata of different types and shared by the parties;

¢) during any execution stage, concealing the input stream
and the current state of the original automaton from any
coalition of participants being smaller than a given
threshold;



US 9,742,739 B2

5

d) upon receiving a signal from the dealer, causing the
parties to terminate the execution and to submit their
internal state to the dealer; and

e) computing the current state that defines the computa-
tion result by the dealer.

The automaton may be a reset automaton, or a permuta-
tion automaton, where all the component permutation
automata are powers of the same automaton.

The results and inputs of the first equation may be used to
compute the result of the subsequent equation.

Each cascaded equation may be mapped to an automaton
by mapping variables of the equations into a node of the
automaton.

Several cascade automata may be executed in parallel, to
get a product of automata.

At the execution stage, the dealer may repeatedly send
secret shares of the input stream and each party computes
new values.

In one aspect, the execution of cascaded equations
automata is performed by:

a) an initial stage, during which the variable’s values in
the cascaded equation automata are shared among
several parties using secret sharing, while each symbol
of the input stream is also secret shared;

b) an execution stage, during which each input symbol is
mapped to an input vector and each element in the input
vector is secret shared into three parts by a random
polynomial of a degree of at least 1; and

¢) a collection stage, during which all the parties send the
values back, to reconstruct the actual value indicating
the current state of the automaton.

The communication-less information theoretically secure
multi-party computation may be performed over practically
infinite input streams, or oven infinite input streams.

The dealer may temporarily store and process the input
stream, and send different secret shares of the input streams
to the parties, which do not communicate with each other.

The parties may not return any information back.

At any point in the execution, in response to a call to the
parties from the dealer to send their partial results back, the
dealer may reconstruct the actual computation result, based
on the partial results.

The series of cascaded equations may be executed seri-
ally, starting from the first equation, then the second equa-
tion and so forth, until the execution of the last equation is
completed.

The cascaded equations may be executed by the parties
by:
a) initializing all the participants, during the initial stage;
b) during the execution stage, sending shares to all

participants, wherein each participant executes its

equations independently; and

¢) during the Collection stage, collecting the shares back
from all participants and reconstructing the result.

In one aspect, during the initial stage:

a) each variable’s values in the cascaded equation
automata are shared among several participants using
secret sharing;

b) entries of the vector that represent each symbol of the
input are also secret shared; and

¢) if one equation includes multiplication, the degree of
the polynomial that encodes the value of the variable
will be more than the degree of the variable in the
preceding equation.

The automaton may be executed to obtain:

string matching;

recognizing regular language;
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recognizing context free language;

recognizing context sensitive language.

A string matching search may be performed on a file by:

a) secret sharing the file and storing the shares in clouds
for further computation;

b) repeatedly and iteratively running computations on the
secret shared file by constructing the accumulating
automaton for the required computation;

¢) sending a copy of the automaton to each cloud that
maintains shares of the file;

d) allowing each cloud to perform calculations on the
accumulating automaton using its share as the input;

e) allowing each cloud to send the final state of its
accumulating automaton back as an answer for a com-
putation request; and

) reconstructing the state of each node of the accumu-
lating automaton to obtain the computation result,
based on the final states received from all clouds.

A copy of the automaton may be sent to each cloud in

different time.

The present invention is also directed to a method of
securely executing a bounded input stream, by non-interac-
tive, multi-party computation, comprising the following
steps:

a) distributing the input stream among a plurality of
parties, which do not communicate among themselves
throughout execution, by a dealer having a secret initial
state, the dealer distributes shares of the secret state
between the parties;

b) providing an accumulating automaton for executing the
input stream, the accumulating automaton is shared by
the parties and represented by a directed graph and
having regular nodes, an accumulating node and tran-
sitions between nodes, such that:

b.1) an accumulating node accumulates values, while
the regular nodes recompute values, based on values
of their neighboring nodes;

b.2) the value of the encodes the number of times a
pattern has occurred in the input stream;

¢) during any execution stage, concealing the input sym-
bol and the current state of the original automaton from
any coalition of participants being smaller than a given
threshold;

d) upon receiving a signal from the dealer, causing the
parties to terminate the execution and to submit their
internal state to the dealer; and

e) computing the current state that defines the computa-
tion result by the dealer.

Wrong shares elimination may be carried out whenever

one or more parties send corrupted information.

The accumulating automaton may be a DAG Accumulat-
ing Automaton (DAA) represented by a Directed Acyclic
Graph (DAG) structure.

The accumulating automaton may be marked by a vector
of values, one integer value for each node in the accumu-
lating automaton.

The accumulating automaton may be executed by:

a) assigning initial value to a node of the accumulating

automaton;

b) retrieving symbols from the input stream that is sent by
the dealer and input the symbols to the accumulating
automaton; and

¢) responsive to inputting the symbols, triggering transi-
tions of the automaton to new marking.

In one aspect, whenever communicationless multi-party

computation is required, using in servers, the following steps
are performed:
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a) secret sharing the marking of the original DAA into in
shares by the dealer;

b) assigning each share to one of the servers;

c) secretly sharing by the dealer, each input into in shares
and sending each share to a distinct server;

d) executing the local DAA share and local input share of
each server and obtaining a share of the new marking
of the local DAA;

e) allowing the dealer to activate all in servers to send
executed shares back;

1) collecting all executed shares; and

g) constructing the current marking of the original DAA.

The DAA may be executed to obtain:

string matching that is performed for supporting database
updates that include delete or insert operations;

supporting search, insert, and delete database operations;

recognizing regular language;

recognizing context free language;

recognizing context sensitive language.

The DAA may be implemented as a flip flop automaton.

The present invention is further directed to a system for

securely executing an unbounded or practically unbounded
input stream of symbols, by non-interactive, multi-party
computation, which comprises:

a) a dealer being a computerized apparatus having a secret
initial state, the dealer distributing the input stream
among a plurality of parties being servers or compu-
tation clouds, which do not communicate among them-
selves throughout execution and distributing shares of
the secret state between the parties;

b) a finite-state automaton defined by a series of cascaded
equations, for executing the input stream, the automa-
ton being a cascade product of component automata of
different types and shared by the parties, or being an
accumulating automaton for executing the input
stream, the accumulating automaton is shared by the
parties and represented by a directed graph and having
regular nodes, an accumulating node and transitions
between nodes, such that:

b.1) an accumulating node accumulates values, while
the regular nodes recompute values, based on values
of their neighboring nodes;

b.2) the value of the node that encodes the number of
times a pattern has occurred in the input stream;

wherein the dealer is adapted to:

¢) during any execution stage, conceal the input stream
and the current state of the original automaton from any
coalition of participants being smaller than a given
threshold;

d) upon receiving a signal from the dealer, cause the
parties to terminate the execution and to submit their
internal state to the dealer; and

e) compute the current state that defines the computation
result.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1 illustrates a string matching example;

FIG. 2 illustrates a string matching algorithm with one
wildcard “k” in the pattern (a.fa*aa);

FIG. 3 illustrates an example of a DAG accumulating
automaton DAA®P' and the initial marking;

FIG. 4 illustrates the marking of DAA®®Y after processing

the input vector v=(0,1,0,0) which represents the input c;
FIG. 5 illustrates a flip-flop automaton A7,
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FIG. 6 illustrates an example of a DAG accumulating
automaton DAA? for implementing the flip-flop automaton;

FIG. 7 illustrates an example of a DAG accumulating
automaton DAA“F®” for recognizing the regular language
(opa)* and the initial marking;

FIG. 8 illustrates an example of a DAG accumulating
automaton DAAXP®” for recognizing the regular language
a(apa)* and the initial marking;

FIG. 9 illustrates an example of a DAG accumulating
automaton DAA®®" for recognizing the regular language
«’p* and the initial marking;

FIG. 10 illustrates an example of automata, mapped from
two cascaded equations;

FIG. 11 illustrates an example of secure and private
computation on a secret shared file among communication-
less clouds;

FIG. 12 illustrates the DAG accumulating automaton
DAA%P for recognizing the context free language o’/f”;

FIG. 13 illustrates a DAG accumulating automaton
DAA*P” for recognizing the context sensitive language
aSBS S;

FIG. 14aq illustrates a cascaded permutation automata;

FIG. 146 illustrates a cascaded reset and permutation
automata; and

FIG. 15 illustrates secure and private computation on a
secret shared file among communicationless clouds.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention proposes a scheme for information
theoretically secure, non-interactive, multi-party computa-
tion of a specific type of automata. The computation is
carried by several participants over unbounded stream of
secret shared inputs and these participants do not commu-
nicate among themselves throughout the execution. At any
stage of the scheme, the input symbol and current state of the
original automaton are concealed perfectly against any
coalition of participants that is not larger than a given
threshold.

The scheme performs the computation correctly for any
finite-state automaton, which can be described as a cascade
product (or equivalently wreath product) of component
automata of two types.

A component automaton is either a reset automaton, or a
permutation automaton, where all the component permuta-
tion automata are powers of the same automaton.

It is required that the parties process an unbounded stream
of input and that the scheme be non-interactive. In addition,
it is required that the input stream is not public, but is shared
among the parties so that any small coalition of participants
can’t obtain any input symbol. Using this approach, both the
state of A and the input stream are secret for any small
coalition of parties.

A scheme to correctly compute the final state of an
automaton is presented, where all parties share the FSA A
and a dealer has a secret initial state. The dealer distributes
shares of the secret state to the participants, which then
receive a stream of input.

For each input symbol that arrives, each of the partici-
pants receives only a share of the symbol. This way, any
small enough coalition of parties (excluding the dealer) does
not have any information on the initial state or on any input
symbol. Finally, given a signal from the dealer, the partici-
pants terminate the execution and submit their internal state
to the dealer, who computes the current state that defines the
computation result.
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In the proposed scheme, the dealer correctly computes the
final state of A if A can be represented as a cascade (wreath)
product of component automata of the following two types:
the accumulating automata and the cascaded equations
automata. Both types of automata will be used in the
construction of secure and private multi-party computation
among participants that use no communication among them-
selves while processing practically or really unbounded
input stream.

According to the present invention, a very long file can be
secret shared and stored. None of the parties can gain any
information about the files. String matching (searches) can
be repeatedly performed by these cloud agents without them
knowing anything concerning the search result.

It is assumed that there is one dealer D who wants to
perform secure private computation over a very long input
stream which may be actually unbounded. The dealer uses in
cloud servers or agents P,, . . . , P,, which perform a
computation over the input stream received from D. The
dealer D sends different input shares to every agent. Agents
do not communicate with each other. Any agent cannot learn
anything about the original inputs that D partitions to shares,
as the dealer uses Shamir’s secret sharing to partition any
symbol of the original input to be sent to the agents. At any
given stage, the dealer D may collect the state of the agents
and obtain the computation result. The agents use memory
that is logarithmic in the length of the input, and therefore,
can accommodate practically unbounded inputs.

Secure Private Multi-Party Computation for String Match-
ing

String matching is a basic task used in a variety of scopes.
A pattern (string) has to be found as part of text processing,
also as part of malware (virus) defense, pattern recognition,
bioinformatics and database query. It is possible to use the
method proposed by the present invention to perform string
matching that can support database updates, such as delete
or insert operations.

The inputs are text and a pattern, the pattern is usually
much shorter than the text. The goal is to find whether the
pattern appears in the text or not.

FIG. 1 describes a simple example of string matching.
One brute force method for string matching is to check every
single character as being the first character of the pattern and
match the entire pattern against the text, starting at this
character position.

String Matching Algorithm Over Directed Graph

A simplified non-secure version of the algorithm will be
described first, followed by the way to obtain information
theoretically secure computation extending the simplified
version.

FIG. 2 depicts a directed graph G which will be used to
implement the string matching task of FIG. 1. G is used to
check whether there is a substring LOVE in the text. In G,
there are five nodes labeled N, to N and four arcs labeled
L, O, V, E, respectively. N5 is a special node called an
accumulating node that is depicted by two concentric
circles.

Execution of the String Matching Algorithm

Each input value assigns a new (integer) value to every

node. N % denotes the value of the node N, immediately after

step j. According to the pattern, an input vector V is defined,
in which each element matches one corresponding element
in the pattern. Since the pattern consists of four characters,
{L, O, V, E}, a vector of four binary values that represents
each possible character in the pattern is used. If the input
character does not appear in the pattern, then the value of the
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vector v is set to (0,0,0,0). In particular, when the input
symbol is O then the vector V is set to (0,1,0,0) and when

the input symbol is, say C, then the vector V is set to
(0,0,0,0). The value of N, is initialized to be 1 and is
unchanged during the entire string matching process. For
any given input vector (v,,v,,v5,v,), the values of all the
marking of nodes of the graph are simultaneously computed
as follows

]\]2(1'+1):]\]1(i).v1
]\13(l'+1):]\12(l').v2
ND=N Dy

NsHD=N 4N, Oy, Eq. (1)

Equation 1 defines the transition functions for the string
matching algorithm. N, which is an accumulated node,
accumulates values, while the rest of the nodes recompute
values based only on values of the neighboring nodes.
Result of the Algorithm

At any time, the value of the node N5 can be checked. If
N;>0 then there is at least one match. Actually, the value of
the node N encodes the number of times the pattern has
occurred in the input stream. It is assumed that the number
of occurrences does not exceed the maximal integer that the
system can maintain and represent for Nj.
Communicationless Secure Private Multi-Party String
Matching Protocol

The following example presents a secure multi-party
string matching algorithm using Shamir’s secret sharing
scheme to mimic the algorithm presented above. Among the
whole protocol, the computation field is a big finite field. It
is assumed that all the computations will not overflow
during the execution of the protocol.

Initial Stage

Nodes” values are shared among several participants
using secret sharing and so are the entries of the vector that
represent each symbol of the input text. It is assumed that the
input symbols are represented by secret shares of polyno-
mial of degree 1. Since the transition function includes
multiplication, the degree of the polynomial that encodes the
value of a certain node is one more than the degree of the
preceding node. In this particular example, at least six
participants should be used to ensure that the result encoded
in Nj can be decoded.

For simplicity, it is assumed there are six participants
P,, .. ., Py that undertake the task of multi-party compu-
tation string matching. For the five nodes of the graph, five
random polynomials f; to {5 are defined, where {; is of degree
i. Each corresponding polynomial is used to secret share
each node’s initial value among the six participants, where
each partner P, receives one share. The initial share of the
node N, that is maintained by the participants P, is denoted
by S 2, J\,_(O).

Execution Stage

Each symbol o is mapped to an input vector v . Then each

element in the input vector V is secret shared into six parts
by a random polynomial of degree 1. Each share of the input
vector is then sent to one of the participants. For the
participant P,, 1=i<6, the corresponding shares of the input
vector are denoted (S, ,, S;,,, S; ., S, ). The number 1 is
also secret shared into six shares by a random polynomial of
degree 1. The six shares are denoted as follows:

5135525397 S0 S5y S6 v

where the share S, | will be sent to the participant P,.
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Immediately after processing the k™ input symbol, the
value of the (share of) node N, that is stored by the partici-
pant P, is denoted as Sp_ Nj(k). When the dealer sends a vector
as follows:

(SivgSi15352:55,v3:55,0)

P, executes the following transitions:

1)
SPiJ\’l( " LSI'»VO

(er 1) — [ON
Spi; Seuvy St

Frl)— ®).
SPz"N}( + LSPi’Nz( ).S,

ivy

Tl ).
SPz'JV4( " LSP;-,Ns( S,

iv3

Gerl)— &), (),
Sps " =Spvs ey S

v
Collection Stage

Whenever it is desired to compute the result of the
algorithm, all the participants are asked to send the value
that corresponds to N5 back. Having the shares of all
participants, it is possible to construct the actual value of N5
using Lagrange interpolation. The value obtained indicates
whether the search is successful in finding the string or not.
Analysis of the System

The greatest value is associated with the node N where
this value represents the number of times the pattern was
found in the text, namely, is bounded by the length of the
input text. Thus, for every practical system a field that can
be represented by a counter of, say, 128 bits will surely
suffice.

The participants do not know the inputs and the results
during the entire execution of the string matching. It is
possible to secure the pattern by executing such string
matching over all possible strings, collect all results, and
compute only the result of the pattern of interest.
Matching Several Strings Simultaneously

The above method also works for simultaneous multiple
strings matching, which means that it is possible to search
more than one string simultaneously. An example of a
directed graph for matching more than one string at the same
time is described in FIG. 3.

General String Matching

To allow any string matching, the basic wildcard charac-
ters (characters that can be used to substitute for any other
character or characters in a string) “?” and “*”, will be
implemented.

String Matching Algorithm with Question Mark in the
Pattern

A character “?” is a character that may be substituted by
any single character of all the possible characters. The
directed graph for the matching algorithm that includes a
question mark in the pattern is described in FIG. 4. The arc
that represents the question mark is marked by the integer 1
and implies a transition that uses the marking of the previous
node unchanged (multiplied by 1).

The transition function for this algorithm given in Equa-
tion 2 is similar to the one defined by Equation 1. In
Equation 2, each node value is computed depending on the
input and/or the previous state of the node. At step k, under
each input, for each node N,, the next value is computed as
follows:
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Vo ifi=0 Eq. @
N‘-(kﬂ) = N‘(f} -V if N; is not an accumulating node
N‘-(k) + N‘(ﬂ -v;  if N; is an accumulating node

Vo if i=0 Eq. (3)

N‘(f} if the former edge is labeled by 1

N‘(f} -V if N; is not an accumulating node;

the former edge is not labeled by 1

N‘-(k) + N‘(f} -V if N; is an accumulating node;

the former edge is not labeled by 1

String Matching Algorithm with a Star Wildcard in the
Pattern

A wildcard character is a character that may be
substituted by any number of the characters from all the
possible characters. The directed graph for the matching
algorithm for a pattern with a star is described in FIG. 5.

The transition function for this algorithm given in Equa-
tion (4) is similar to the one defined by Equation (3). In step
k, under each input, for each node N,, is computed as
follows:

axgeor

Vo ifi=0 Eq. )

N‘-(kﬂ) = N‘(f} v if N; is not an accumulating node

N‘-(k) + N‘(ﬂ -v;  if N; is an accumulating node

Any Secure Private String Matching Algorithm

In subsection 2.1 it is shown how to perform a basic string
matching algorithm on a directed graph. In subsection 2.2 a
secure and private implementation of the algorithm in the
scenario of multi-party computation without communica-
tion, is detailed. Based on the basic implementation methods
for implementing complicated string matching algorithms
with wildcards in the pattern are presented. Thus, it is
possible to implement (practically) any string matching
algorithm securely and privately without communication
between participants. The limitation of the value in the
accumulating nodes is only theoretic, as for any text length
n (say, even of practically not existing length of 2'2%
characters) and a pattern that yields 1 accumulating nodes,
I'log n bits are needed to encode a state. The field of the
numbers should be n or (slightly) larger.
Accumulating Automata

The string matching scheme is generalized by defining
general accumulating automata (AA) and then, ways are
shown to implement DAG accumulating automata (DAA)
that are directed acyclic (not necessarily connected) graphs
structure (DAG automata are natural extensions of tree
automata, operating on DAGs instead of on trees). Then,
ways to mark the AAs and the corresponding semantics for
such marking are defined.

Accumulating automata are state-transition systems, as

defined next:
Definition 1 An accumulating automaton is a triple A=(V, X,
T) where:

V is a set of variables, called nodes. A node is either
regular or accumulating. For an accumulating automa-
ton, marking operation means to assign value for each
node and updating process of an automaton means to
refresh all the nodes on new input. On updating, the
new marking of a regular node is a function of the
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marking of neighboring nodes and the inputs, while the
marking computation function of an accumulating node
also considers the node’s previous value;

2 is the alphabet, which is the set of input symbols (or
characters) that the automaton should operate on;

T is a set of transitions. A triple (p,, @, p,)eVxZ—V is
called a transition or arc, and is written 8(p,a)=p,. For
every 8 in T there exist p,qeV and ceX such that
d(p.c)=q

One may consider a more expensive operation, where
d(p,r,a)=q, pr-a=q (or even an operation that multiplies the
marking of more than two nodes). This type of operation
yields an addition of the degree of the polynomial used to
secret share the node.

An accumulating automaton is represented by a (possibly
disconnected) directed graph where each regular node is
depicted by a circle, accumulating node by two concentric
circles, and transitions by (directed) arcs. Input symbols are
labeled as symbols above the corresponding transitions.
Definition 2 (DAG Accumulating Automata—DAA): An
accumulating automaton that defines a graph G that is
acyclic, namely, without cycles and self-loops is a DAG
accumulating automaton. In other words, DAG accumulat-
ing automaton is an accumulating automaton for which it
holds that for any p in V, there does not exist o, . . . , &, €X
and 9, . .., d,€T, such that

) ... 808 pa)a) . .. )=p

Moreover, for every p and q in 'V, if there exists cieX such
that 3(p,c)=q then p=~q.
Definition 3 (Marking of accumulating automata): A mark-
ing of an accumulating automaton A=(V,2,T) is a vector of
values, one integer value for each node in V. A marked
automaton A is a 4-tuple (V.Z,T,M), where M is the marking
vector.
Definition 4 (Execution semantics of AA): The behavior of
an accumulating automaton is defined as a relation on its
markings, as follows. Assuming that immediately after the j
step, node p, has the value n, ™ then in the (j+1)* step, for
all the transitions B(pt,ai)?p;, where peV,o,€Z, the new
value of p, is computed as follows

If p, is a regular node, then

(+1) _ (N ()

My = My, -+ ;e
S(pr.ai)=pi, S(pr,a;i)=p;,
VpieVia;er VYpreVia;=1

If p, is an accumulating node, then

G+ — p) ). e ()
) =ng) + nyl o + ]
(p,9i)=pj» 8(pr.a;)=p;,
VpreViael VpreVia;=1

Marking and Execution of Accumulating Automata

A simple example of a DAG accumulating automaton
DAA*P=(V,2,T) is illustrated in FIG. 6. By checking the
marking of this automaton, it is possible to decide whether
or not the input stream is ofy. It means that this DAG
accumulating automaton will be used as deterministic finite
automaton that checks whether the input language is affy or
not. The four regular nodes are V={N,, N,, N, N,}. The
input symbols are from the alphabet Z={c.,3,y}. N, is a free
node and is always assigned 0. The transitions are:
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No=d,(Ny,a0)
N3=8,(N,,3)

N4=83(N3.y)

Initial Marking of DAG Accumulating Automaton
The initial marking of the automaton is:

N, O=1; N,OO=0; N;©O=0; N, =0

The initial marking automaton is depicted in FIG. 6.
Execution of the DAA DAA*FY

Executing the DAA means to retrieve symbols one by one
from the input stream and input to the DAA. The input
triggers transitions of the automaton, resulting in a new
marking. Assuming that the input symbol is ., then the input

vector is set to 7:(VO, Vy,Vs, v3)=(0,1,0,0), and the new
marking of the automaton computed.
The transitions are computed as follows

Nl(l):vozo;
Nz(l):Nl(o)'V1:1
N3(1):N2(0)'V2:0;

NAO=N;O,=0

Here, the new marking of the automaton is as in FIG. 7.
Description of the Marking of DAAFY

The marking of DAA®®Y is changed by the input symbol
that is sent by the dealer. At any time, it is possible to check
the marking of DAA“®Y, If the marking is (0,0,1,0), then the
input stream is of. An accumulating automaton DAA®PY can
be used to accept the language afy. The marking of DAA®FY
reveals whether the input stream is accepted or not.
Correctness of DAA®PY

The marking of the automaton under all possible input
streams to check whether the automaton represents the
function properly or not, will be analyzed. Prior to the first
input the marking of DAA®? is (1,0,0,0) and the state of the
automaton is “rejected”. If (1) the first input symbol is not
a; (2) the first input symbol is ., the second symbol is not
s (3) the first two input symbols are af, the third symbol
is not v, then the marking of DAA*F is (0,0,0,0), and
therefore the state of the automaton is “rejected”. In all the
three cases above, any successive additional input symbol
will not change the marking of the automaton to (0,0,0,1),
thus, implying that the whole input stream will be rejected.
In other words, if and only if the first three input symbols are
o.fy, then the marking of DAA®PY is (0,0,0,1), and the state
of the automaton is “accepted”. Any extra input(s) will
change the marking of the automaton to (0,0,0,0), and the
state of the automaton is also changed to “rejected”.
DAG Accumulating Automata and Communicationless
Multi-Party Computation

It is assumed that one dealer wants to execute DAA under
a long input stream with the help of in servers without the
leakage of the marking of the automaton and the whole input
to the automaton. The dealer may secret share the marking
of'the DAA into in shares and assign each share to one of the
servers. When the dealer wants to execute the DAA, he
secretly shares each input into in shares and sends each share
to a distinct server. Each server will manipulate its local
DAA share and local input share to obtain a share of the new
marking of the DAA. At some point, the dealer will ask all
the servers to send shares back and use these shares to
construct the current marking of the original DAA.
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An unprivileged subgroup of the servers will have no
information concerning the inputs (but an upper bound on its
length) and/or the computation result. The servers do not
know, in terms of information theoretical security, the actual
value of the input sequence and the marking of the DAA.

Before stating the relationship between DAA and secret
sharing, a route and the polynomial degree of a node in (the
graph G of) a DAA are defined, as well as the polynomial
degree of the entire DAA. The accumulating field of a DAA
is also defined. A sequence of nodes {N,, ..., N, }isa
route, if there are a sequence of transitions {6].1, R 6jk} and
input symbols {a,, . . . , @, } such that
o, (V;

6j1(Ni1aatl):IVi2a s 0, (N, 0=,

ket 1

The longest route always starts in a free node, i.e., a node
with no incoming arcs. Let t be the secret sharing threshold,
the minimal number of participants needed to reveal the
automaton state, where t-1 is the polynomial degree in
which the marking of the free nodes and the inputs are
encoded.

Definition 5 (Polynomial Degree of a Node and a DAA):
Assuming t to be the secret sharing threshold, for any node
N in a DAA, if the maximal length of a route from a free
node to N, is len, the polynomial degree of N, is deg=(len+
1)(t-1). The greatest polynomial degree of a node in a DAA
is defined to be the polynomial degree of the DAA.

An accumulating automaton with cycles (beyond self-
cycles with corresponding character 1 as demonstrated in the
sequel) implies an infinite polynomial degree.

Theorem 1

For any DAA with polynomial degree d, it is possible to
implement and execute the DAA among d participants
without communication and hide the (practically)
unbounded input stream except an upper bound on the
length of the input.

Definition 6 (Accumulating Field of a DAA)

The maximal number that should be represented by a
marking variable in a DAG accumulating automaton DAA
is defined as accumulating field of DAA.

A sufficient accumulating field should be used to avoid
overflow during the execution. The total number of accu-
mulating nodes an<|V| and the maximal number of active
outgoing edges aoe=|V| of a node, imply a bound on the
accumulating field. Each edge is active when the dealer
assigns 1 to the label of the edge. Unlike traditional deter-
ministic automaton, in this case, there can be several edges
from one node with the same label that lead to (at most
IV1-1) distinct nodes. Note that aoe is bounded by IVI-1.
The worst case is considered, where all accumulating nodes
are lined one after the other (possibility according to a
topological sort output), each multiplying its value by the
number of outgoing arcs as an input to the next node in the
line. Basically, for bounding the possible values, the maxi-
mal value that can be accumulated in the i node is con-
sidered to be the value that is added after multiplication by
aoe, to the marking of the (i+1)* node with each input.
Theorem 2

For an input stream of length n and a constant sized DAA
the computing field of each node is in O(log n) bits.

The Use of AA/DAA Beyond String Matching

Some applications of a DAG accumulating automaton
will be described, which can recognize regular language,
context free language and context sensitive language. Also
several extensions are present, to the transition function of
directed accumulating automaton, namely: the possibility of
the dealer to ignore characters, the possibility of loops with
unconditional arcs, denoted by the label 1, and harvesting of
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result by comparing values. In some cases, the graph of the
DAA is not connected, thereby allowing the implementation
of every connected component by a different set of partici-
pants. The structure and initial marking of each DAA that
can recognize a particular language in the above classes, are
given. Every DAA can be securely and privately executed
according to the presented scheme.
Implementing a Flip Flop Automaton

Assuming an automaton A” depicted in FIG. 8, in which
the initial state is S,.
Initial Marking and Execution of DAAY

DAG accumulating automaton DAAZ of flip flop automa-
ton can be found in FIG. 9.

The alphabet of DAA? is 2={c,f}. On initializing the
automaton, N, is set to 1, N, is set to 1 and Nj is set to O.

Let the (k+1)” input symbol be mapped to 7:(V0,V1,V2).
The dealer will send different mapping vector depending on

different input symbol. If the input symbol is a, V is set to

(1,1,0). If the input symbol is f3, V is set to (1,0,1). If the
input symbol is y, the dealer will discard it. Such an action
is allowed by the dealer, as well as sending spontaneous
inputs and several characters in one input vector simultane-
ously. Then, the new value of all the nodes is computed as
follows

Nl(k+l):v0
M=y, By

N3(k+1FN l(k).v2

Result of DAAY

After any input symbol, it is possible to check the marking
of DAAZ. If N, is 1, the current state of automaton A is S
If N, is 1, the current state of automaton A? is S, .
Correctness of DAAZ

According to the transitions of DAAZ, it can be seen that
if the input symbol is a, N, will be set to 1. Also, if the input
symbol is 3, N, will be set to 0 and N, will be set to 1.
Recognizing Regular Language (apa)* and a(afa)*
Recognizing the Regular Language (afo)*

DAG accumulating automaton of the algorithm described
in FIG. 10 is the DAG accumulating automaton DAA ©P”
for recognizing the regular language (a.fcv)*. The alphabet
of DAA©P®” is 3=I¢,B}. There is no free node in this
automaton. The accumulating node is Nj.

Initial Marking and Execution of DAA@F”

The first node N is initially set to 1 while all the other
nodes are initially set to 0. For each input symbol, the new
marking of the automaton is computed. Let the (k+1)" input

Eq. (5)

symbol be mapped to 7:(V1,V2). If the input symbol is a, v

is set to (1,0). If the input symbol is f3, V is set to (0,1).
The new value of all the regular nodes is computed as
follows:

N ED=N®
NG D=, By

NFD=N, By

N D= B
N D=, ®
NFD=N® Eq. (6)



US 9,742,739 B2

17

The new value of accumulating node Ny is computed as
follows

NED=NO4N By e N, O 4N, F,

Result of DAA©P®”

After any input symbol, it is possible to check the marking
of DAAP®” Only if N,=1 and N,=0, the input stream is
accepted, otherwise rejected.

It should be noted that among the self-loop defined by N,
Ny and N, the degree for the secret sharing is not changed,
since it involves multiplication by a constant 1.
Correctness of DAA@F®”

According to the transitions of DAA®P®” it is clear that
in the initial marking of the automaton, N, is set to 1, N5 is
set to 0. Also, if the input stream is (apa)*, N, will be set
to 1, Ny stay 0. Also, if the input stream is not (afa)*, N,
will be set to 0 and/or N will not be 0.

Recognizing the Regular Language a(afa)*
DAG Accumulating Automaton of the Algorithm

FIG. 11 illustrates the DAG accumulating automaton
DAA*©@P®” for recognizing the regular language c(afo)*.
The alphabet of DAA™P*” is 3=Iq p}.

Initial Marking and Execution of DAA®“F®”

The free node N, is initially set to 1 while all the other
nodes are initially set to 0. For each input symbol, the new
marking of the automaton is computed. Let the (k+1)” input

Eq. (7)

symbol be mapped to VZ(VO, v,, v,) where v, is always set
to 0. If the input symbol is a, V is set to (0,1,0). If the input

symbol is 3, V is set to (0,0,1).
The new value of all the regular nodes is computed as
follows

Nl(ku):vo
Nz(k+1):N1(k)'V1+N7(k)
]\13(k+1):]\12(k).v1

N D=, By
N5(k+1):Nl(k)'v1+N4(k)'V1
Ns(k*rl): Nz(k)

N DN Eq. (8)

The new value of the accumulating node Ny is computed
as follows
N DN BN, Bk Ny Bk Ny By N, Oyt
N,
Result of DAA*P®”

After any input symbol, it is possible to check the marking
of DAA®@P®” Only if N.=1 and N=0, the input stream is
accepted, otherwise rejected.

Correctness of DAA™P®”

According to the transitions of DAA™®P®" it is clear that
in the initial marking of the automaton, N is set to 0, Ny is
set to 0. Also, if the input stream is o, N5 will be set to 1, Ng
will stay 0. Also, if the input stream is a(afo)*, N5 will be
set to 1, Ny will stay 0; (4) if the input stream is not a(afor)*
or o, N5 will be set to 0 or N will not equal 0.
Recognizing the Context Free Language as op*

DAG Accumulating Automaton of the Algorithm

FIG. 12 illustrates the DAG accumulating automaton
DAA%P for recogmzlng the context free language o”3°. The
alphabet of DAA® is Z={a,p}.

Initial Marking and Execution of DAA®

All the free nodes N, N, N5 are initially set to 1 while

the other nodes are initially set to 0. Let the (k+1)” input

N
symbol be mapped to v=(v,, vy, V", v, v,), where v,, v'y

Eq. (9)
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will always be set to 1 and v", will always be set to 0. When
the new marking of the automaton is computed, v, is given
to N, v, is given to N; and V', is given to Ns. If the input
symbol is a, V is set to (1,1,0,1,0). If the input symbol is 3,
¥ is set to (1,1,0,0,1).

The new value of all the regular nodes is computed as
follows

Nl(k+1):v0
N3(k+1):v,1
NFD=ym, Eq. (10)

All the accumulating nodes are computed as follows

Nz(k+l = Nz(k)_ Nl(k) e
N3(k+l = N4(k)_ NS(k) Vs
Ns(ku ) Ns(k)‘ Ns(k) Vs
N7(k+l = N7(k)_ Ns(k) vy

N D=N BN By 4N By

Result of DAA®F

After any input symbol, it is possible to check the marking
of DAA®P If Ng>0, the input stream is rejected. Only if
N,=N, and Ny=0, thesﬁinput stream is accepted.
Correctness of DAA®™

According to the transitions of DAA®? and the input
mapping, node N, and N, count all the o and § symbols in
the input stream respectively. While checking the input
stream, if the first input symbol is §, node Ny is set to 1, then
there is one or more o symbols after symbol [, node Ny
increases by 1.
Recognizing the Context Sensitive Language oy’
DAG Accumulating Automaton of the Algorithm

FIG. 13 illustrates a DAG accumulating automaton
DAA%PY for recognizing the context sensitive language

o’B*y’. The alphabet of DAA®PFY js 3= ia By}
Initial marking and execution of DAA®

All the free nodes N, N;, N, N, are initially set to 1
while the other nodes are initially set to 0. Let the (k+1)”

input symbol be mapped to VZ(VO, V', V"0 Vo, Vi, Vo, V3),
where v, V', V"', will always be set to 1 and v", will always
be set to 0. When the new marking of the automaton is
computed, v, is given to N, v'; is given to Nj, v" is given

Eq. (11)

to Ny and v" is given to N,. If the input symbol is c, Vis
set to (1,1,0,1,0). If the input symbol is B, Vv is set to
(1,1,0,0,1).

The new value of all the regular nodes is computed as
follows

N D=y
N3(k+1):v,1
NsFD=ym, Eq. (12)

All the accumulating nodes are computed as follows

Nz(k”):Nz(k)+N1(k)'V1
N4(k+l = N4(k) + Ns(k) vy
Ns(kn): Ns(k) + N5(k)'v |
N7(k+l )= N7(k) + Ns(k) Vo

NeFD=N BN By 4N By,
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In Equation 12, there are three equations e, e,, e; with
three variables N;, N,, N, and three inputs v,, v,, v;.
Cascaded Equations Automata

When the input stream is actually unbounded, the present
invention used a cascaded equations automata (which is a
novel type of automata).

Cascaded equations will be defined first, as well as their
execution. Then mapping of the cascaded equations into an
automaton will be described.

Definition 7 (Execution of cascaded equations) Cascaded
equations is a series of equations €,,ep, . . . , €; where the
results and inputs of the first equations e,, 5, . . . , €; are used
to compute the result of the next equation e,,,. On the other
hand, an equation e, cannot use the result of any e, such that
j<i. Cascaded equations are computed serially from e, to e,
The first equation is computed, then the second and so on.
At the end, the last equation is computed.

Given the following cascaded equations:

€N FrD=N By,

ey N,OH D= N, N ey, Eq. (13)

There are two equations, e, and e,, in the cascaded
equations described in Eq. (13). The two equations compute
a vector of variables (N,N,) using a vector of inputs (v,,
v,). Before executing the cascaded equations, the variables
of the vector are initialized. Then, at the execution stage,
new values for N; and N, are compute in a sequential
fashion using modular two arithmetics, first using e, to
compute N, and then using e, to compute N,. The input
symbols (v,, v,) may have one of the possible values
(00),(01),(10) and (11). The state of the automaton is defined
by a vector of the values of N, and N,. The vector may have
the following values (00),(01),(10) or (11). A node of the
automaton is denoted s(N;, N,) and the input vector is
denoted (11), (10), (01) and (00) by «, P, v and T respec-
tively. By computing the cascaded equations using modular
two arithmetics, it is possible to obtain the automaton
depicted in FIG. 14a.

Next, the following cascaded equations are given:

e N, F D=y,

ey N, D= B 7 Ger Dy, Eq. (14)

By computing the cascaded equations in Eq. (14) using
arithmetic modular two, it is possible to get the correspond-
ing automaton which is depicted in FIG. 14b. A node is
denoted Sy The input vector (11), (10) and (01) are
denoted by «, p and y respectively.

Multi-Party Execution of Cascaded Equations Automata
Over Strictly Unbounded Input Stream

Secret sharing is used to allow secure multi-party execu-
tions of the cascaded equations automata. The execution of
cascaded equations automata is performed into three stages:
initial stage, execution stage and collection stage. The
automaton in FIG. 14a is used to demonstrate how the
multi-party execution is performed.

Initial Stage

Each variable’s values in the cascaded equation automata
are shared among several participants using secret sharing.
Entries of the vector that represent each symbol of the input
stream are also secret shared. For the particular example in
FIG. 14a, it is assumed that the input symbols are repre-
sented by secret shares of polynomial of degree 1. If one
equation includes multiplication, the degree of the polyno-
mial that encodes the value of the variable will be more than
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the degree of the variable in the preceding equation. For the
example of FIG. 14a, at least three participants must be used
to ensure that N, can be secret shared correctly among all the
participants. For the two variable N, and N,, two random
polynomials f; and f, with degree 1 and 2, are defined. Each
corresponding polynomial is use to secret share each node’s
initial value among the three participants, each participant
receives one share of N; and N,.
Execution Stage

The dealer maps each input symbol o to an input vector

— . . — .

v . Then each element in the input vector v is secret shared
into three parts by a random polynomial of degree 1. Each
share of the input vector is then sent to one of the partici-
pants. Each participant computes the new value of N; and
N, according to Eq. 13. Then, every participant gets the new
share of N; and N,,.

Collection Stage

Whenever it is desired to compute the result of the
algorithm, all the participants are asked to send the value
that corresponds to N and N, back. Having the shares of all
participants, it is possible to reconstruct the actual value of
N, and N, using [Lagrange interpolation. The value obtained
indicates the current state of the automaton in FIG. 14a.
Definitions of a Cascaded Equations Automaton:
Definition 8:

Mapping from cascaded equation to automaton Each
equation in cascaded equations has a result. The results of
the equations are selected to define a vector, the values of
which encodes a node in the cascaded equations automaton.
A vector of variables of the cascaded equations is regarded
as the input symbols to the mapping automaton.

Every cascaded equations can be mapped to an automaton
by mapping variables of the equations into a node of the
automaton.

Theorem 3

The cascaded equations automata scheme information
theoretically secures the inputs and the states of the automa-
ton.

A product of automata may be defined by executing
several cascade automata in parallel. Two or more cascade
equations with the same input can be merged together to
obtain a new automaton.

Theorem 4

Given that A=A x . . . xA, is a cascade product of
automata and B is a permutation automaton, |Al=. .. =
IA,I=IBl and assuming that for every i=1, . . . , k the
automaton A, is either a reset automaton or a permutation
automaton that can be represented by a cascaded equation,
where all transitions are in the same cyclic group as the
transitions of B, Then, A can be secretly shared for
unbounded split input by n+1 parties with threshold 1 where
n is computed as follows:

Computing n:

Let @, be a function of the input and the states of
A, ..., A, | that outputs the input for A,. By representing
@, as a multivariate polynomial, its highest degree is of the
form

al. | -1

Xy - Xy

n, is Defined to be n=n o+ . . .
defined by max(n,, . . ., n,).

This result can be further generalized by having B (and
each A)) be either a reset automaton or a set of non-
intersecting permutation automata (i.e., there are several
non-intersecting sets of nodes, where each node is a permu-
tation automaton). One additional generalization is the use
of other modular operation (beyond mod 2) and hence larger
fields.

+n,_;-0,_;. Then, n is
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The realization of non-permutation automaton as illus-
trated in FIG. 145, yields an important generalization of pure
permutation automaton, since permutation automaton can be
implemented by using only additions of secret shares.

Secure and Private Repeated Computations on a Secret
Shared File

The methods introduced above are implemented on a
fixed (large) file. Firstly, the file (e.g., biometric data) is
secret shared and the shares are stored in clouds for future
computation. Then it is possible to repeatedly and iteratively
compute (for example, search the file for different strings) on
the secret shared file by constructing the accumulating
automaton for the needed computation and sending a copy
of the automaton (possibly in different times) to each cloud
that maintains shares of the file. Then, each cloud perform
calculations on the accumulating automaton using their file
share as the input. At the end, each cloud sends the final state
of the accumulating automaton back as an answer for the
computation request. The final states received from the
cloud allow the reconstruction of the state of each node of
the accumulating automaton to obtain the computation result
(for example, whether or not the string was found). This
scheme is depicted in FIG. 15 and includes the following
stages:

Setup Stage

In this stage, the basic parameters for the whole scheme
are defined: the Alphabet (e.g., ASCII, binary) that the
scheme works on, the computation field of all the accumu-
lating automata and the highest polynomial degree the
system can deal with.

Initialization Stage

In this stage, the given file f, the chosen Alphabet and
number of clouds are used to output secret shares of each
character of the file, where each character is encoded by a
vector of secret shares, one secret share for each possible
character.

Automaton Construction Stage

This stage uses the user computation task as an input and
outputs an automaton.
Automaton Execution Stage

This stage uses the accumulating automaton and the
shares of the file to output the result of the computation. The
result is the share of the final marking of the accumulating
automaton.

Result Reconstruction Stage

This is the final stage, in which the user receives the
marking shares to output the computation result.
Example of Implementation of the Scheme:

If a provider Peter wants to store a network log file in
clouds and a user user David wants to search the string
“attack America” in the file. But Peter does not want to give
the whole file to David in clear text.

Firstly, Peter uses the Initialization stage to produce
stream of shares of his log file (vector of shares for each
character, character after a character) and then store each
stream in a different cloud (or cloud virtual machine) not
necessarily simultaneously. Clouds are not aware about their
counterparts in the process. Then, David uses the Automaton
Construction stage to get an accumulating automaton for the
searching task (in some cases it is possible to give different
independent parts of the accumulating automaton to differ-
ent clouds). David sends the accumulating automaton to
each cloud. Every cloud runs the Automaton Execution
stage on its share of the file and the accumulating automaton.
Each cloud sends the marks of the final states of the
accumulating automaton back to David. David executes the
Result Reconstruction stage to find the computation result.
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During the whole procedure, no cloud knows the exact
network log file and only David knows the computation
result.

It is possible to execute any string matching privately and
securely in terms of information theoretically security. Other
canonical examples of regular languages, context free lan-
guages and context sensitive languages can be computed
efficiently in terms of information theoretical security.
Remote authentication and data stream processing systems
using cloud services can be implemented based on the
schemes proposed by the present invention. It is also pos-
sible to design a general accumulating automata (in the style
of FPGA), in which each original symbol is mapped to
several symbols, so that the dealer is able to choose the
non-participating arcs by always assigning zero to their
labels. The information sent by malfunctioning participants
or even malicious participants may be eliminated from the
collected information by standard error correcting schemes,
such as the Berlekamp Welch method (described in U.S. Pat.
No. 4,633,470).

The above examples and description have of course been
provided only for the purpose of illustration, and are not
intended to limit the invention in any way. As will be
appreciated by the skilled person, the invention can be
carried out in a great variety of ways, employing more than
one technique from those described above, all without
exceeding the scope of the invention.

The invention claimed is:
1. A method of securely executing an input stream of
symbols, by non-interactive, multi-party computation, com-
prising:
distributing, by a dealer, said input stream among a
plurality of parties of servers or computation cloud
components, which do not communicate among them-
selves throughout execution, wherein said dealer hav-
ing a secret initial state, and distributing shares of said
secret state between said plurality of parties;

providing a finite-state automaton defined by a series of
cascaded equations, to execute said input stream by a
hardware processor, said automaton being a cascade
product of component automata of different types and
shared by said plurality of parties;

at any execution stage, concealing said input stream and

current state of the original automaton from any coali-
tion of participants being smaller than a given thresh-
old, wherein the threshold is a minimum number of
participants required to reveal automaton states;

upon receiving a signal from said dealer, said plurality of

parties terminate their execution and submit their indi-
vidual internal state to said dealer; and

computing, by the dealer, the current state that defines the

computation result.

2. A method according to claim 1, wherein the automaton
is a reset automaton, or a permutation automaton, where all
the component permutation automata are powers of the same
automaton.

3. A method according to claim 1, wherein the results and
inputs of the first equation are used to compute the result of
the subsequent equation.

4. A method according to claim 1, wherein each cascaded
equation is mapped to an automaton by mapping variables of
the equations into a node of said automaton.

5. A method according to claim 1, wherein several cas-
cade automata are executed in parallel, to get a product of
automata.
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6. A method according to claim 1, wherein during the
execution stage, the dealer repeatedly sends secret shares of
the input stream and each party computes new values.

7. A method according to claim 1, wherein the execution
of a cascaded equations automata is performed by:

an initial stage, during which the variable’s values in said

cascaded equations automata are shared among several
parties using secret sharing, while each symbol of the
input stream is also secret shared;

an execution stage, during which each input symbol is

mapped to an input vector and each element in the input
vector is secret shared into three parts by a random
polynomial of a degree of at least 1; and

a collection stage, during which all the parties send their

values back to the dealer, to reconstruct the actual value
indicating the current state of the automaton.

8. A method according to claim 7, wherein the cascaded
equations are executed by the parties by:

initializing all the participants, during the initial stage;

during the execution stage, sending shares to all partici-

pants, where each participant executes its equations
independently; and

during the collection stage, collecting the shares back

from all participants and reconstructing the result.

9. A method according to claim 8, wherein during the
initial stage:

each variable’s values in the cascaded equations automata

are shared among several participants using secret
sharing;

entries of the vector that represent each symbol of the

input stream are also secret shared; and

if one equation includes multiplication, the degree of the

polynomial that encodes the value of the variable will
be higher than the degree of the variable in the pre-
ceding equation.

10. A method according to claim 9, wherein the input
stream is executed to obtain:

string matching;

recognizing regular language;

recognizing context free language;

recognizing context sensitive language.

11. A method according to claim 10, wherein a copy of the
automaton is sent to each cloud in different time.

12. A method according to claim 11, wherein string
matching is performed for supporting database updates.

13. A method according to claim 11, wherein the database
updates include delete or insert operations.

14. A method according to claim 10, wherein the DAA is
implemented as a flip flop automaton.

15. A method according to claim 1, wherein the commu-
nication-less information theoretically secure multi-party
computation is performed over practically infinite input
streams, or oven infinite input streams.

16. A method according to claim 1, wherein the dealer is
a stateless dealer.

17. A method according to claim 1, wherein the dealer
temporarily stores and processes the input stream, and sends
different secret shares of the input streams to the parties,
which do not communicate with each other.

18. A method according to claim 1, wherein the parties do
not return any information back to the dealer.

19. A method according to claim 1, wherein the at any
point in the execution, in response to a call to the parties
from the dealer to send their partial results back, said dealer
reconstructs the actual computation result, based on said
partial results.
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20. A method according to claim 1, wherein the series of
cascaded equations are executed serially starting from the
first equation, then to the execution of the second equation
and so forth, until the execution of the last equation is
completed.

21. A method according to claim 1, wherein a string
matching search is performed on a file by:

secret sharing said file and storing the shares in computing

clouds for further computation;

repeatedly and iteratively running computaions on the

secret shared file by constructing the accumulating
automaton for the required computation;

sending a copy of said automaton to each cloud that

maintains shares of said file;
allowing each cloud to perform calculations on said
accumulating automaton using its share as the input;

allowing each cloud to send the final state of its accumu-
lating automaton back as an answer for a computation
request; and

reconstructing the state of each node of the accumulating

automaton to obtain the computation result, based on
the final state of the automata received from all clouds.

22. A method according to claim 1, further comprising
carrying out wrong shares elimination whenever one or
more parties send back corrupted information.

23. A method of securely executing a bounded input
stream of symbols, by non-interactive, multi-party compu-
tation, comprising:

distributing, by a dealer, said input stream among a

plurality of parties, which do not communicate among
themselves throughout execution, wherein said dealer
having a secret initial state, and distributing shares of
said secret state between said plurality of parties;
providing an accumulating automaton to execute said
input stream by a hardware processor, said accumulat-
ing automaton is shared by said plurality of parties and
represented by a directed graph of transition functions
which has a plurality of regular nodes, an accumulating
node and ftransitions represented by a direct arc
between two nodes, such that:
said accumulating node accumulates values associated
with a pattern, while said regular nodes recompute
values, based on values of their neighboring nodes,
wherein a value is initially set to a predetermined
positive integer; and
the value accumulated by said accumulating node that
encodes the number of times the pattern has occurred
in said input stream;

at any execution stage, concealing the input symbol and

current state of the original automaton from any coali-
tion of participants being smaller than a given thresh-
old, wherein the threshold is a minimum number of
participants required to reveal automaton states;

upon receiving a signal from said dealer, said plurality of

parties terminate the execution and submit their indi-
vidual internal state to said dealer; and

computing, by the dealer, the current state that defines the

computation result.

24. A method according to claim 23, wherein the accu-
mulating automaton is a DAG Accumulating Automaton
(DAA) represented by a directed acyclic graphs structure.

25. A method according to claim 24, wherein whenever
communicationless multi-party computation is required,
using m servers, performing the following steps:

secret sharing the marking of the original DAA into m

shares by the dealer;

assigning each share to one of the servers;
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secretly sharing by said dealer, each input into m shares

and sending each share to a distinct server;

executing the local DAA share and the local input share

of each server and obtaining a share of the new marking
of the local DAA;

allowing said dealer to activate all m servers to send

executed shares back;

collecting all executed shares; and

constructing the current marking of said original DAA.

26. A method according to claim 23, further comprising
marking the accumulating automaton by a vector of values,
one integer value for each node in said accumulating
automaton.

27. A method according to claim 23, wherein the accu-
mulating automaton is executed by:

assigning an initial value to a node of said accumulating

automaton;

retrieving symbols from the input stream that is sent by

the dealer and inputting said symbols to said accumu-
lating automaton; and

responsive to inputting said symbols, triggering transi-

tions of the automaton to a new marking.

28. A method according to claim 23, wherein the DAA is
executed to obtain:

string matching;

supporting search, insert, and delete database operations;

recognizing regular language;

recognizing context free language;

recognizing context sensitive language.

29. A system for securely executing an input stream of
symbols, by non-interactive, multi-party computation, com-
prising:

a dealer being a computerized apparatus having a secret

initial state, said dealer distributing said input stream
among a plurality of parties of servers or computation
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cloud components, which do not communicate among
themselves throughout execution and do not exchange
shares of said secret state with each other between said
plurality of parties;
a finite-state automaton defined by a series of cascaded
equations, to execute said input stream by a hardware
processor, said automaton being a cascade product of
component automata of different types and shared by
said plurality of parties, or being an accumulating
automaton for executing said input stream, wherein
said accumulating automaton is shared by said plurality
of parties and represented by a directed graph of
transition functions which has a plurality of regular
nodes, an accumulating node and transitions repre-
sented by a direction arc between two nodes, such that:
said accumulating node accumulates values associated
with a pattern, while said regular nodes recompute
values, based on values of their neighboring nodes,
wherein a value is initially set to a predetermined
positive ineger; and

the value accumulated by said accmulating node
encodes the number of times the pattern has occurred
in said input stream;

wherein said dealer is configured to:

at any execution stage, conceal the input stream and
current state of the original automaton from any coali-
tion of participants being smaller than a given thresh-
old, wherein the threshold is a minimum number of
participants required to reveal automaton states;

upon receiving a signal from said dealer, cause said
plurality of parties to terminate the execution and to
submit their individual internal state to said dealer; and

compute by said dealer the current state that defines the
computation result.



